Theory of Genetic Algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling
暂无分享,去创建一个
[1] Samir W. Mahfoud. Finite Markov Chain Models of an Alternative Selection Strategy for the Genetic Algorithm , 1993, Complex Syst..
[2] L. Shen,et al. Linear Algebra , 1968 .
[3] O. Catoni. Sharp large deviations estimates for simulated annealing algorithms , 1991 .
[4] Günter Rudolph,et al. Finite Markov Chain Results in Evolutionary Computation: A Tour d'Horizon , 1998, Fundam. Informaticae.
[5] Lothar M. Schmitt. Optimization with genetic algorithms in multispecies environments , 2003, Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003.
[6] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[7] James E. Baker,et al. Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.
[8] Pedro Larrañaga,et al. Genetic Algorithms: Bridging the Convergence Gap , 1999, Theor. Comput. Sci..
[9] L. Darrell Whitley,et al. An Executable Model of a Simple Genetic Algorithm , 1992, FOGA.
[10] José Carlos Príncipe,et al. A Simulated Annealing Like Convergence Theory for the Simple Genetic Algorithm , 1991, ICGA.
[11] D. Fogel. ASYMPTOTIC CONVERGENCE PROPERTIES OF GENETIC ALGORITHMS AND EVOLUTIONARY PROGRAMMING: ANALYSIS AND EXPERIMENTS , 1994 .
[12] David E. Goldberg,et al. An Analysis of Reproduction and Crossover in a Binary-Coded Genetic Algorithm , 1987, ICGA.
[13] Kalyanmoy Deb,et al. A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.
[14] Awi Federgruen,et al. Ergodicity in Parametric Nonstationary Markov Chains: An Application to Simulated Annealing Methods , 1987, Oper. Res..
[15] Gábor Renner,et al. Spline interpolation with genetic algorithms , 1997, Proceedings of 1997 International Conference on Shape Modeling and Applications.
[16] Michael D. Vose,et al. Modeling genetic algorithms with Markov chains , 1992, Annals of Mathematics and Artificial Intelligence.
[17] Gary J. Koehler,et al. A proof of the Vose-Liepins conjecture , 1994, Annals of Mathematics and Artificial Intelligence.
[18] Siddhartha Bhattacharyya,et al. An Analysis of Non-Binary Genetic Algorithms with Cardinality 2υ , 1994, Complex Syst..
[19] Peter Nordin,et al. The Effect of Extensive Use of the Mutation Operator on Generalization in Genetic Programming Using Sparse Data Sets , 1996, PPSN.
[20] Joe Suzuki,et al. A Further Result on the Markov Chain Model of Genetic Algorithms and Its Application to a Simulated Annealing-like Strategy , 1998, FOGA.
[21] J. K. Lenstra,et al. Local Search in Combinatorial Optimisation. , 1997 .
[22] S. Tavaré,et al. Computational Methods for the Coalescent , 1997 .
[23] D. E. Goldberg,et al. Simple Genetic Algorithms and the Minimal, Deceptive Problem , 1987 .
[24] H. Geiringer. On the Probability Theory of Linkage in Mendelian Heredity , 1944 .
[25] Ehl Emile Aarts,et al. Simulated annealing : an introduction , 1989 .
[26] Riccardo Poli,et al. Schema Theory for Genetic Programming with One-Point Crossover and Point Mutation , 1997, Evolutionary Computation.
[27] Riccardo Poli,et al. Exact Schema Theory for Genetic Programming and Variable-Length Genetic Algorithms with One-Point Crossover , 2001, Genetic Programming and Evolvable Machines.
[28] Alden H. Wright,et al. The Simple Genetic Algorithm and the Walsh Transform: Part II, The Inverse , 1998, Evolutionary Computation.
[29] Michael D. Vose,et al. Random Heuristic Search , 1999, Theor. Comput. Sci..
[30] David E. Goldberg,et al. A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing , 1990, Complex Syst..
[31] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[32] Günter Rudolph,et al. An Evolutionary Algorithm for Integer Programming , 1994, PPSN.
[33] Michael D. Vose,et al. The simple genetic algorithm - foundations and theory , 1999, Complex adaptive systems.
[34] Lawrence Davis,et al. Genetic Algorithms and Simulated Annealing , 1987 .
[35] O. Catoni. Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules , 1992 .
[36] David E. Goldberg,et al. A Genetic Algorithm for Parallel Simulated Annealing , 1992, PPSN.
[37] R. Cerf. Asymptotic convergence of genetic algorithms , 1998, Advances in Applied Probability.
[38] Lothar M. Schmitt,et al. Theory of Coevolutionary Genetic Algorithms , 2003, ISPA.
[39] Alden H. Wright,et al. The Simple Genetic Algorithm and the Walsh Transform: Part I, Theory , 1998, Evolutionary Computation.
[40] Christopher R. Stephens,et al. Effective Degrees of Freedom in Genetic Algorithms and the Block Hypothesis , 1997, ICGA.
[41] Lothar M. Schmitt. Coevolutionary Convergence to Global Optima , 2003, GECCO.
[42] Julian F. Miller,et al. Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.
[43] Garrison W. Greenwood,et al. Convergence in Evolutionary Programs with Self-Adaptation , 2001, Evolutionary Computation.
[44] Lishan Kang,et al. On the Convergence Rates of Genetic Algorithms , 1999, Theor. Comput. Sci..
[45] S. Lang. Complex Analysis , 1977 .
[46] Dean Isaacson,et al. Markov Chains: Theory and Applications , 1976 .
[47] O. Catoni. Applications of sharp large deviations estimates to optimal cooling schedules , 1991 .
[48] W. Vent,et al. Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .
[49] Siddhartha Bhattacharyya,et al. General Cardinality Genetic Algorithms , 1997, Evolutionary Computation.
[50] A. Wright,et al. Form Invariance and Implicit Parallelism , 2001, Evolutionary Computation.
[51] Alexandru Agapie,et al. Theoretical Analysis of Mutation-Adaptive Evolutionary Algorithms , 2001, Evolutionary Computation.
[52] E. Seneta. Non-negative Matrices and Markov Chains (Springer Series in Statistics) , 1981 .
[53] Tatsuya Nomura,et al. An Analysis of Two-Parent Recombinations for Real-Valued Chromosomes in an Infinite Population , 2001, Evolutionary Computation.
[54] David E. Goldberg,et al. Parallel Recombinative Simulated Annealing: A Genetic Algorithm , 1995, Parallel Comput..
[55] D. E. Goldberg,et al. Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .
[56] Melanie Mitchell,et al. An introduction to genetic algorithms , 1996 .
[57] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[58] Haldun Aytug,et al. Stopping Criteria for Finite Length Genetic Algorithms , 1996, INFORMS J. Comput..
[59] H. H. Schaefer. Banach Lattices and Positive Operators , 1975 .
[60] Raphaël Cerf,et al. An Asymptotic Theory of Genetic Algorithms , 1995, Artificial Evolution.
[61] Gunar E. Liepins,et al. Punctuated Equilibria in Genetic Search , 1991, Complex Syst..
[62] Zbigniew Michalewicz,et al. Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.
[63] Günter Rudolph,et al. Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.
[64] Zbigniew Michalewicz,et al. Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .
[65] RudolphGünter. Finite Markov chain results in evolutionary computation , 1998 .
[66] Lothar M. Schmitt,et al. Theory of genetic algorithms , 2001, Theor. Comput. Sci..
[67] Chrystopher L. Nehaniv,et al. Linear Analysis of Genetic Algorithms , 1998, Theor. Comput. Sci..
[68] José Carlos Príncipe,et al. A Markov Chain Framework for the Simple Genetic Algorithm , 1993, Evolutionary Computation.