Design of a motorcycle frame using neuroacceleration strategies in MOEAs

Abstract Designing a low-budget lightweight motorcycle frame with superior dynamic and mechanical properties is a complex engineering problem. This complexity is due in part to the presence of multiple design objectives—mass, structural stress and rigidity—, the high computational cost of the finite element (FE) simulations used to evaluate the objectives, and the nature of the design variables in the frame’s geometry (discrete and continuous). Therefore, this paper presents a neuroacceleration strategy for multiobjective evolutionary algorithms (MOEAs) based on the combined use of real (FE simulations) and approximate fitness function evaluations. The proposed approach accelerates convergence to the Pareto optimal front (POF) comprised of nondominated frame designs. The proposed MOEA uses a mixed genotype to encode discrete and continuous design variables, and a set of genetic operators applied according to the type of variable. The results show that the proposed neuro-accelerated MOEAs, NN-NSGA II and NN-MicroGA, improve upon the performance of their original counterparts, NSGA II and MicroGA. Thus, this neuroacceleration strategy is shown to be effective and probably applicable to other FE-based engineering design problems.

[1]  E. A. Avellone,et al.  Marks' Standard Handbook for Mechanical Engineers , 1916 .

[2]  P. Marcal,et al.  Introduction to the Finite-Element Method , 1973 .

[3]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[4]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[5]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[6]  Thomas Bäck,et al.  Optimal Mutation Rates in Genetic Search , 1993, ICGA.

[7]  Stephanie Forrest,et al.  Proceedings of the 5th International Conference on Genetic Algorithms , 1993 .

[8]  Robert E. Smith,et al.  Fitness inheritance in genetic algorithms , 1995, SAC '95.

[9]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[10]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[11]  Inman Harvey,et al.  Error Thresholds and Their Relation to Optimal Mutation Rates , 2022 .

[12]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[13]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[14]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[15]  Carlos A. Coello Coello,et al.  A Short Tutorial on Evolutionary Multiobjective Optimization , 2001, EMO.

[16]  Kalyanmoy Deb,et al.  Self-Adaptive Genetic Algorithms with Simulated Binary Crossover , 2001, Evolutionary Computation.

[17]  Paolo Di Barba,et al.  Multiobjective Design Optimization of Real-Life Devices in Electrical Engineering: A Cost-Effective Evolutionary Approach , 2001, EMO.

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[20]  Tony Foale,et al.  Motorcycle handling and chassis design : the art and science , 2002 .

[21]  Lothar Thiele,et al.  Proceedings of the 2nd international conference on Evolutionary multi-criterion optimization , 2003 .

[22]  M. Walker,et al.  A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis , 2003 .

[23]  Paolo Ermanni,et al.  Using Evolutionary Methods with a Heterogeneous Genotype Representation for Design Optimization of a Tubular Steel Trellis Motorbike-Frame , 2003 .

[24]  Yukio Nakajima,et al.  Optimization of Construction of Tire Reinforcement by Genetic Algorithm , 2004 .

[25]  Bernhard Sendhoff,et al.  On Test Functions for Evolutionary Multi-objective Optimization , 2004, PPSN.

[26]  U. Aickelin,et al.  The Application of Bayesian Optimization and Classifier Systems in Nurse Scheduling , 2004, PPSN.

[27]  Liang Shi,et al.  Multiobjective GA optimization using reduced models , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[28]  C. A. Coello Coello,et al.  Multiobjective structural optimization using a microgenetic algorithm , 2005 .

[29]  Hussein A. Abbass,et al.  Fitness inheritance for noisy evolutionary multi-objective optimization , 2005, GECCO '05.

[30]  Panos Y. Papalambros,et al.  A Survey of Structural Optimization in Mechanical Product Development , 2005, J. Comput. Inf. Sci. Eng..

[31]  Masataka Yoshimura,et al.  A Multiple Cross-Sectional Shape Optimization Method for Automotive Body Frames , 2005 .

[32]  M. Giger,et al.  Development of CFRP racing motorcycle rims using a heuristic evolutionary algorithm approach , 2005 .

[33]  Marco Farina,et al.  Linked interpolation-optimization strategies for multicriteria optimization problems , 2005, Soft Comput..

[34]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[35]  Manolis Papadrakakis,et al.  An adaptive neural network strategy for improving the computational performance of evolutionary structural optimization , 2005 .

[36]  Y. G. Xu,et al.  Hybrid evolutionary algorithm and application to structural optimization , 2005 .

[37]  A.L. Medaglia,et al.  Approximation to the optimum design of a motorcycle frame using finite element analysis and evolutionary algorithms , 2005, 2005 IEEE Design Symposium, Systems and Information Engineering.

[38]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[39]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[40]  Theodore Baumeister,et al.  Marks' Standard Handbook For Mechanical Engineers (Standard Handbook for Mechanical Engineers) , 2006 .

[41]  Jean-Philippe Rennard,et al.  Handbook of Research on Nature-inspired Computing for Economics and Management , 2006 .

[42]  Carlos A. Coello Coello,et al.  Knowledge Incorporation in Multi-objective Evolutionary Algorithms , 2008, Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases.

[43]  Satchidananda Dehuri,et al.  Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases , 2008, Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases.

[44]  Andy J. Keane,et al.  Multi-Objective Optimization Using Surrogates , 2010 .