The nucleus does not significantly affect the migratory trajectories of amoeba in two-dimensional environments

[1]  C. A. Rosselló,et al.  The Biology of the Nuclear Envelope and Its Implications in Cancer Biology , 2019, International journal of molecular sciences.

[2]  S. Takeda,et al.  Structural basis for cofilin binding and actin filament disassembly , 2018, Nature Communications.

[3]  R. Hawkins Do migrating cells need a nucleus? , 2018, The Journal of cell biology.

[4]  J. Rubin,et al.  Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction , 2018, The Journal of cell biology.

[5]  E. Gomes,et al.  Dealing with the nucleus during cell migration. , 2018, Current opinion in cell biology.

[6]  J. Cortés,et al.  Long-term memory in the migration movements of enucleated Amoeba proteus , 2017, bioRxiv.

[7]  Kenneth M. Yamada,et al.  Activating the nuclear piston mechanism of 3D migration in tumor cells , 2017, The Journal of cell biology.

[8]  Qing Luo,et al.  Nucleus and nucleus-cytoskeleton connections in 3D cell migration. , 2016, Experimental cell research.

[9]  R. Hawkins,et al.  Physical role for the nucleus in cell migration , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Carsten Marr,et al.  Software tools for single-cell tracking and quantification of cellular and molecular properties , 2016, Nature Biotechnology.

[11]  H. Cai,et al.  The novel RacE-binding protein GflB sharpens Ras activity at the leading edge of migrating cells , 2016, Molecular biology of the cell.

[12]  Kenneth M. Yamada,et al.  Fibroblasts Lead the Way: A Unified View of 3D Cell Motility. , 2015, Trends in cell biology.

[13]  Gil Ariel,et al.  Swarming bacteria migrate by Lévy Walk , 2015, Nature Communications.

[14]  I. M. D. L. Fuente Elements of the cellular metabolic structure , 2015, Front. Mol. Biosci..

[15]  Jean-François Rupprecht,et al.  Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence , 2015, Cell.

[16]  G. Pyke Understanding movements of organisms: it's time to abandon the Lévy foraging hypothesis , 2015 .

[17]  T. Sejnowski,et al.  Identifying transport behavior of single-molecule trajectories. , 2014, Biophysical journal.

[18]  Alex Groisman,et al.  Cellular memory in eukaryotic chemotaxis , 2014, Proceedings of the National Academy of Sciences.

[19]  Alexis Gautreau,et al.  Quantitative and unbiased analysis of directional persistence in cell migration , 2014, Nature Protocols.

[20]  P. Devreotes,et al.  Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes , 2014, Cellular and Molecular Life Sciences.

[21]  Jan Lammerding,et al.  Broken nuclei--lamins, nuclear mechanics, and disease. , 2014, Trends in cell biology.

[22]  J. Lammerding,et al.  Nuclear Mechanics and Mechanotransduction in Health and Disease , 2013, Current Biology.

[23]  Kevin D Dorfman,et al.  Microfluidic chemostat for measuring single cell dynamics in bacteria. , 2013, Lab on a chip.

[24]  Vadim V. Nikulin,et al.  Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations , 2012, Front. Physio..

[25]  Paul S. Muhle-Karbe,et al.  On the Influence of Reward on Action-Effect Binding , 2012, Front. Psychology.

[26]  Andrea J. Liu,et al.  Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells , 2012, Nature.

[27]  Liang Li,et al.  ‘Dicty dynamics’: Dictyostelium motility as persistent random motion , 2011, Physical biology.

[28]  J. Lammerding Mechanics of the nucleus. , 2011, Comprehensive Physiology.

[29]  Jan Lammerding,et al.  Nuclear mechanics during cell migration. , 2011, Current opinion in cell biology.

[30]  Miguel Vicente-Manzanares,et al.  Non-muscle myosin II takes centre stage in cell adhesion and migration , 2009, Nature Reviews Molecular Cell Biology.

[31]  Adrian J. Thrasher,et al.  Wiskott–Aldrich Syndrome: Immunodeficiency resulting from defective cell migration and impaired immunostimulatory activation , 2009, Immunobiology.

[32]  I. Kaverina,et al.  Microtubule network asymmetry in motile cells: Role of Golgi-derived array , 2009, Cell cycle.

[33]  Erik Sahai,et al.  The actin cytoskeleton in cancer cell motility , 2009, Clinical & Experimental Metastasis.

[34]  G. Viswanathan,et al.  Lévy flights and superdiffusion in the context of biological encounters and random searches , 2008 .

[35]  J. Lammerding,et al.  Nuclear Shape, Mechanics, and Mechanotransduction , 2008, Circulation research.

[36]  R. Preuss,et al.  Anomalous dynamics of cell migration , 2008, Proceedings of the National Academy of Sciences.

[37]  L. R. da Silva,et al.  Search dynamics at the edge of extinction: Anomalous diffusion as a critical survival state , 2007 .

[38]  Henrik Flyvbjerg,et al.  Cell motility as persistent random motion: theories from experiments. , 2005, Biophysical journal.

[39]  K. Rottner,et al.  Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement , 2005, Cellular and Molecular Life Sciences CMLS.

[40]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[41]  Dennis E Discher,et al.  The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber , 2004, Journal of Cell Science.

[42]  Thomas D Pollard,et al.  Cellular Motility Driven by Assembly and Disassembly of Actin Filaments , 2003, Cell.

[43]  Leah Edelstein-Keshet,et al.  Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. , 2002, Biophysical journal.

[44]  Jeffrey M. Hausdorff,et al.  Fractal dynamics in physiology: Alterations with disease and aging , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Luís A. Nunes Amaral,et al.  From 1/f noise to multifractal cascades in heartbeat dynamics. , 2001, Chaos.

[46]  D. Percival,et al.  Physiological time series: distinguishing fractal noises from motions , 2000, Pflügers Archiv.

[47]  L. Amaral,et al.  Multifractality in human heartbeat dynamics , 1998, Nature.

[48]  D. Percival,et al.  Analyzing exact fractal time series: evaluating dispersional analysis and rescaled range methods. , 1997, Physica A.

[49]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[50]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  R. Goldman,et al.  Preservation of normal behavior by enucleated cells in culture. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[52]  K. Wilson Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior , 1971 .

[53]  M. Ord The viability of the anucleate cytoplasm of Amoeba proteus. , 1968, Journal of cell science.

[54]  D. Prescott,et al.  Relations between cell growth and cell division. I. Reduced weight, cell volume, protein content, and nuclear volume of amoeba proteus from division to division. , 1955, Experimental cell research.

[55]  Albert Einstein,et al.  Zum gegenwärtigen Stand des Strahlungsproblems , 1909 .

[56]  J. Gibbs Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics , 1902 .

[57]  J. R.,et al.  Quantitative analysis , 1892, Nature.