Adaptive Hybrid Genetic Algorithm for Groundwater Remediation Design

Optimal groundwater remediation design problems are often complex, nonlinear, and computationally intensive. Genetic algorithms allow solution of more complex nonlinear problems than traditional gradient-based approaches, but they are more computationally intensive. One way to improve performance is through inclusion of local search, creating a hybrid genetic algorithm (HGA). This paper presents a new self-adaptive HGA (SAHGA) and compares its performance to a nonadaptive hybrid genetic algorithm (NAHGA) and the simple genetic algorithm (SGA) on a groundwater remediation problem. Of the two hybrid algorithms, SAHGA is shown to be far more robust than NAHGA, providing fast convergence across a broad range of parameter settings. For the test problem, SAHGA needs 75% fewer function evaluations than SGA, even with an inefficient local search method. These findings demonstrate that SAHGA has substantial promise for enabling solution of larger-scale problems than was previously possible.

[1]  Christine A. Shoemaker,et al.  Dynamic Optimal Ground-Water Reclamation with Treatment Capital Costs , 1998 .

[2]  R. Gailey Application of Mixed-Integer Linear Programming Techniques for Water Supply Wellfield Management and Plume Containment at a California EPA Site , 1999 .

[3]  David E. Goldberg,et al.  Optimizing Global-Local Search Hybrids , 1999, GECCO.

[4]  Arlen W. Harbaugh,et al.  A modular three-dimensional finite-difference ground-water flow model , 1984 .

[5]  C. Zheng,et al.  An integrated global and local optimization approach for remediation system design , 1999 .

[6]  Liang-Cheng Chang,et al.  Dynamic Optimal Groundwater Management with Inclusion of Fixed Costs , 2002 .

[7]  F. Spitzer Principles Of Random Walk , 1966 .

[8]  T. Culver,et al.  Constraint Handling for Genetic Algorithms in Optimal Remediation Design , 2000 .

[9]  Charles S. Sawyer,et al.  Groundwater Remediation Design Using a Three‐Dimensional Simulation Model and Mixed‐Integer Programming , 1995 .

[10]  D. McKinney,et al.  Approximate Mixed‐Integer Nonlinear Programming Methods for Optimal Aquifer Remediation Design , 1995 .

[11]  David E. Goldberg,et al.  Decision making in a hybrid genetic algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[12]  Patrick M. Reed,et al.  Striking the Balance: Long-Term Groundwater Monitoring Design for Conflicting Objectives , 2004 .

[13]  Jean Baptiste Pierre Antoine de Monet de Lamarck,et al.  Zoological Philosophy; An Exposition with Regard to the Natural History of Animals .. , 1984 .

[14]  J. Baldwin A New Factor in Evolution , 1896, The American Naturalist.

[15]  Barbara S. Minsker,et al.  Computational Issues for Optimal In-Situ Bioremediation Design , 1998 .

[16]  R. Peralta,et al.  Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems , 1999 .

[17]  Christine A. Shoemaker,et al.  OPTIMAL CONTROL FOR GROUNDWATER REMEDIATION BY DIFFERENTIAL DYNAMIC PROGRAMMING WITH QUASI-NEWTON APPROXIMATIONS , 1993 .

[18]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[19]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[20]  Robert V. Hogg,et al.  Introduction to Mathematical Statistics. , 1966 .

[21]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[22]  T. P. Clement,et al.  Modeling Multispecies Reactive Transport in Ground Water , 1998 .

[23]  David E. Goldberg,et al.  Risk‐based in situ bioremediation design using a noisy genetic algorithm , 2000 .

[24]  C. Zheng,et al.  GROUND WATER MANAGEMENT OPTIMIZATION USING GENETIC ALGORITHMS AND SIMULATED ANNEALING: FORMULATION AND COMPARISON 1 , 1998 .

[25]  S. Ranjithan,et al.  Using genetic algorithms to solve a multiple objective groundwater pollution containment problem , 1994 .

[26]  T. Prabhakar Clement,et al.  Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site , 2000 .

[27]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  Angelo M. Sabatini,et al.  A hybrid genetic algorithm for estimating the optimal time scale of linear systems approximations using Laguerre models , 2000, IEEE Trans. Autom. Control..

[30]  L. Darrell Whitley,et al.  Lamarckian Evolution, The Baldwin Effect and Function Optimization , 1994, PPSN.

[31]  John M. Mulvey,et al.  Contaminated groundwater remediation design using simulation, optimization, and sensitivity theory: 1. Model development , 1988 .

[32]  George S. Dulikravich,et al.  Three-Dimensional Aerodynamic Shape Optimization Using Genetic and Gradient Search Algorithms , 1997 .

[33]  David E. Dougherty,et al.  Design Optimization for Multiple Management Period Groundwater Remediation , 1996 .

[34]  David E. Goldberg,et al.  Optimal sampling in a noisy genetic algorithm for risk-based remediation design , 2001 .

[35]  G. Karatzas,et al.  The solution of groundwater quality management problems with a nonconvex feasible region using a cutting plane optimization technique , 1996 .

[36]  D. Goldberg,et al.  Verification and extension of the theory of global-local hybrids , 2001 .

[37]  David E. Goldberg,et al.  Designing a competent simple genetic algorithm for search and optimization , 2000 .

[38]  David E. Dougherty,et al.  Optimal groundwater management: 2. Application of simulated annealing to a field-scale contamination site , 1993 .