Just relax: convex programming methods for identifying sparse signals in noise

This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that has been contaminated with additive noise, the goal is to identify which elementary signals participated and to approximate their coefficients. Although many algorithms have been proposed, there is little theory which guarantees that these algorithms can accurately and efficiently solve the problem. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure that convex relaxation succeeds. As evidence of the broad impact of these results, the paper describes how convex relaxation can be used for several concrete signal recovery problems. It also describes applications to channel coding, linear regression, and numerical analysis

[1]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[2]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[3]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[4]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[5]  H. L. Taylor,et al.  Deconvolution with the l 1 norm , 1979 .

[6]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[7]  S. Levy,et al.  Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution , 1981 .

[8]  D. Oldenburg,et al.  Recovery of the acoustic impedance from reflection seismograms , 1983 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  F. Santosa,et al.  Linear inversion of ban limit reflection seismograms , 1986 .

[11]  A. H. Siddgi Functional analysis : with applications , 1986 .

[12]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[13]  A. Atkinson Subset Selection in Regression , 1992 .

[14]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[15]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[16]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[17]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[18]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[19]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[20]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[21]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[22]  Heinz H. Bauschke,et al.  Legendre functions and the method of random Bregman projections , 1997 .

[23]  K. Ball An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .

[24]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[25]  Jean-Jacques Fuchs Extension of the Pisarenko method to sparse linear arrays , 1997, IEEE Trans. Signal Process..

[26]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[27]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[28]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[29]  Federico Girosi,et al.  An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.

[30]  S. Mallat A wavelet tour of signal processing , 1998 .

[31]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[32]  Jean-Jacques Fuchs,et al.  On the application of the global matched filter to DOA estimation with uniform circular arrays , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[33]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[34]  K. Ball Chapter 4 – Convex Geometry and Functional Analysis , 2001 .

[35]  Jean-Jacques Fuchs On the application of the global matched filter to DOA estimation with uniform circular arrays , 2001, IEEE Trans. Signal Process..

[36]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[37]  D. Donoho,et al.  Maximal Sparsity Representation via l 1 Minimization , 2002 .

[38]  V. Temlyakov Nonlinear Methods of Approximation , 2003, Found. Comput. Math..

[39]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[41]  Rémi Gribonval,et al.  Harmonic decomposition of audio signals with matching pursuit , 2003, IEEE Trans. Signal Process..

[42]  Avideh Zakhor,et al.  Matching pursuits based multiple description video coding for lossy environments , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[43]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[44]  Arkadi Nemirovski,et al.  On sparse representation in pairs of bases , 2003, IEEE Trans. Inf. Theory.

[45]  Pascal Frossard,et al.  A posteriori quantization of progressive matching pursuit streams , 2004, IEEE Transactions on Signal Processing.

[46]  X. Huo,et al.  Theoretical Results About Finding the Sparsest Representations of Multiple Measurement Vectors ( MMV ) in an Over-complete Dictionary , Using ` 1-Norm Minimization and Greedy Algorithms , 2004 .

[47]  Joel A. Tropp,et al.  Topics in sparse approximation , 2004 .

[48]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[49]  Jean-Jacques Fuchs,et al.  On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.

[50]  Jean-Jacques Fuchs,et al.  Recovery of exact sparse representations in the presence of noise , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[51]  Bhaskar D. Rao,et al.  Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.

[52]  J. Tropp JUST RELAX: CONVEX PROGRAMMING METHODS FOR SUBSET SELECTION AND SPARSE APPROXIMATION , 2004 .

[53]  J. Tropp Recovery of short, complex linear combinations via 𝓁1 minimization , 2005, IEEE Trans. Inf. Theory.

[54]  Jean-Jacques Fuchs,et al.  Recovery of exact sparse representations in the presence of bounded noise , 2005, IEEE Transactions on Information Theory.

[55]  Joel A. Tropp,et al.  Recovery of short, complex linear combinations via /spl lscr//sub 1/ minimization , 2005, IEEE Transactions on Information Theory.

[56]  Joel A. Tropp,et al.  Applications of sparse approximation in communications , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[57]  J. Fuchs SOME FURTHER RESULTS ON THE RECOVERY ALGORITHMS , 2005 .

[58]  P. Vandergheynst,et al.  Sparse Approximation by Linear Programming using an L1 Data-Fidelity Term , 2005 .

[59]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[60]  Inderjit S. Dhillon,et al.  Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..

[61]  Pierre Vandergheynst,et al.  A simple test to check the optimality of a sparse signal approximation , 2006, Signal Process..

[62]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[63]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[64]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[65]  J. Tropp Algorithms for simultaneous sparse approximation. Part II: Convex relaxation , 2006, Signal Process..

[66]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[67]  Dany Leviatan,et al.  Simultaneous approximation by greedy algorithms , 2006, Adv. Comput. Math..

[68]  Joel A. Tropp,et al.  ALGORITHMS FOR SIMULTANEOUS SPARSE APPROXIMATION , 2006 .

[69]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[70]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[71]  Michael Elad,et al.  On the stability of the basis pursuit in the presence of noise , 2006, Signal Process..

[72]  Joel A. Tropp,et al.  Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..

[73]  SPARSE SPIKE DECONVOLUTION WITH MINIMUM SCALE , .