Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing

This paper is dedicated to the statistical analysis of the space of multivariate normal distributions with an application to the processing of Diffusion Tensor Images (DTI). It relies on the differential geometrical properties of the underlying parameters space, endowed with a Riemannian metric, as well as on recent works that led to the generalization of the normal law on Riemannian manifolds. We review the geometrical properties of the space of multivariate normal distributions with zero mean vector and focus on an original characterization of the mean, covariance matrix and generalized normal law on that manifold. We extensively address the derivation of accurate and efficient numerical schemes to estimate these statistical parameters. A major application of the present work is related to the analysis and processing of DTI datasets and we show promising results on synthetic and real examples.

[1]  L. Skovgaard A Riemannian geometry of the multivariate normal model , 1984 .

[2]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[3]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[4]  Zhizhou Wang,et al.  An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[5]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[6]  Guido Gerig,et al.  A Statistical Shape Model of Individual Fiber Tracts Extracted from Diffusion Tensor MRI , 2004, MICCAI.

[7]  Isabelle Bloch,et al.  Distortion correction and robust tensor estimation for MR diffusion imaging , 2002, Medical Image Anal..

[8]  Josep M. Oller,et al.  A distance between multivariate normal distributions based in an embedding into the Siegel group , 1990 .

[9]  A. Dervieux,et al.  Multifluid incompressible flows by a finite element method , 1981 .

[10]  Zhizhou Wang,et al.  A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI , 2004, IEEE Transactions on Medical Imaging.

[11]  Ariel Caticha,et al.  Change, time and information geometry , 2000 .

[12]  C. R. Rao,et al.  Entropy differential metric, distance and divergence measures in probability spaces: A unified approach , 1982 .

[13]  Peter J. Basser,et al.  A normal distribution for tensor-valued random variables: applications to diffusion tensor MRI , 2003, IEEE Transactions on Medical Imaging.

[14]  C. Atkinson Rao's distance measure , 1981 .

[15]  P. Thomas Fletcher,et al.  Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors , 2004, ECCV Workshops CVAMIA and MMBIA.

[16]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[17]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[18]  Olivier D. Faugeras,et al.  Shape metrics, warping and statistics , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[19]  J. M. Oller,et al.  AN EXPLICIT SOLUTION OF INFORMATION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL , 1991 .

[20]  Rachid Deriche,et al.  Variational frameworks for DT-MRI estimation, regularization and visualization , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[21]  Rachid Deriche,et al.  A Riemannian Approach to Diffusion Tensor Images Segmentation , 2005, IPMI.

[22]  A. Dervieux,et al.  A finite element method for the simulation of a Rayleigh-Taylor instability , 1980 .

[23]  David E. Breen,et al.  Level Set Segmentation and Modeling of DT-MRI human brain data , 2003 .

[24]  Zhizhou Wang,et al.  Tensor Field Segmentation Using Region Based Active Contour Model , 2004, ECCV.

[25]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[26]  David S Tuch,et al.  Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging , 2003, NeuroImage.

[27]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[28]  Rachid Deriche,et al.  Geodesic Active Regions: A New Framework to Deal with Frame Partition Problems in Computer Vision , 2002, J. Vis. Commun. Image Represent..

[29]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[30]  Tony F. Chan,et al.  An Active Contour Model without Edges , 1999, Scale-Space.

[31]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[32]  R. Deriche,et al.  A variational framework for active and adaptative segmentation of vector valued images , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[33]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[34]  J. Burbea Informative Geometry of Probability Spaces , 1984 .

[35]  Rachid Deriche,et al.  Inferring White Matter Geometry from Di.usion Tensor MRI: Application to Connectivity Mapping , 2004, ECCV.

[36]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[37]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[38]  W. Förstner,et al.  A Metric for Covariance Matrices , 2003 .

[39]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[40]  Xavier Bresson,et al.  White matter fiber tract segmentation in DT-MRI using geometric flows , 2005, Medical Image Anal..

[41]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[42]  O. Faugeras,et al.  Statistics on Multivariate Normal Distributions: A Geometric Approach and its Application to Diffusion Tensor MRI , 2004 .

[43]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[44]  Rae Baxter,et al.  Acknowledgments.-The authors would like to , 1982 .

[45]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[46]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[47]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[48]  W. Kendall Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .

[49]  P. Thomas Fletcher,et al.  Statistics of shape via principal geodesic analysis on Lie groups , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[50]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[51]  David E. Breen,et al.  Level set modeling and segmentation of diffusion tensor magnetic resonance imaging brain data , 2003, J. Electronic Imaging.

[52]  J. M. Oller,et al.  RAO ’ S DISTANCE FOR NEGATIVE MULTINOMIAL DISTRIBUTIONS , 1985 .

[53]  X. Pennec Probabilities and Statistics on Riemannian Manifolds : A Geometric approach , 2004 .

[54]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[55]  Rachid Deriche,et al.  Segmentation of 3D Probability Density Fields by Surface Evolution: Application to Diffusion MRI , 2004, MICCAI.

[56]  Mikaël Rousson,et al.  Cue Integration and Front Evolution in Image Segmentation. (Intégration d'attributs et évolutions de fronts en segmentation d'images) , 2004 .

[57]  Maher Moakher,et al.  Means and Averaging in the Group of Rotations , 2002, SIAM J. Matrix Anal. Appl..

[58]  Joachim Weickert,et al.  Curvature-Driven PDE Methods for Matrix-Valued Images , 2006, International Journal of Computer Vision.