Grid cells and the entorhinal map of space

[1]  Edvard I. Moser,et al.  Shearing-induced asymmetry in entorhinal grid cells , 2015, Nature.

[2]  Ryan J. Low,et al.  Cellular resolution optical access to brain regions in fissures: Imaging medial prefrontal cortex and grid cells in entorhinal cortex , 2014, Proceedings of the National Academy of Sciences.

[3]  James G. Heys,et al.  The Functional Micro-organization of Grid Cells Revealed by Cellular-Resolution Imaging , 2014, Neuron.

[4]  T. Bonhoeffer,et al.  Grid cells and cortical representation , 2014, Nature Reviews Neuroscience.

[5]  J. O’Keefe,et al.  How environment geometry affects grid cell symmetry and what we can learn from it , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  I. Fried,et al.  Direct recordings of grid-like neuronal activity in human spatial navigation , 2013, Nature Neuroscience.

[7]  J. Prentice,et al.  The Sense of Place: Grid Cells in the Brain and the Transcendental Number e , 2013, 1304.0031.

[8]  D. Tank,et al.  Membrane potential dynamics of grid cells , 2013, Nature.

[9]  Benjamin A. Dunn,et al.  Grid cells require excitatory drive from the hippocampus , 2013, Nature Neuroscience.

[10]  Benjamin A. Dunn,et al.  Recurrent inhibitory circuitry as a mechanism for grid formation , 2013, Nature Neuroscience.

[11]  May-Britt Moser,et al.  The entorhinal grid map is discretized , 2012, Nature.

[12]  Nathaniel J. Killian,et al.  A map of visual space in the primate entorhinal cortex , 2012, Nature.

[13]  Martin Stemmler,et al.  Optimal Population Codes for Space: Grid Cells Outperform Place Cells , 2012, Neural Computation.

[14]  M. Yartsev,et al.  Grid cells without theta oscillations in the entorhinal cortex of bats , 2011, Nature.

[15]  Dylan F. Cooke,et al.  All Rodents Are Not the Same: A Modern Synthesis of Cortical Organization , 2011, Brain, Behavior and Evolution.

[16]  Yoram Burakyy,et al.  Accurate Path Integration in Continuous Attractor Network Models of Grid Cells , 2009 .

[17]  Dan D. Stettler,et al.  Representations of Odor in the Piriform Cortex , 2009, Neuron.

[18]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[19]  J. Knierim,et al.  Influence of boundary removal on the spatial representations of the medial entorhinal cortex , 2008, Hippocampus.

[20]  William W Lytton,et al.  Unmasking the CA1 Ensemble Place Code by Exposures to Small and Large Environments: More Place Cells and Multiple, Irregularly Arranged, and Expanded Place Fields in the Larger Space , 2008, The Journal of Neuroscience.

[21]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[22]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[23]  A. Treves,et al.  Hippocampal remapping and grid realignment in entorhinal cortex , 2007, Nature.

[24]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[25]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[26]  Mark C. Fuhs,et al.  A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex , 2006, The Journal of Neuroscience.

[27]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[28]  Jonathan D. Cohen,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006 .

[29]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[31]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[32]  Leah Edelstein-Keshet,et al.  Mathematical models in biology , 2005, Classics in applied mathematics.

[33]  Stephen D. Van Hooser,et al.  Orientation Selectivity without Orientation Maps in Visual Cortex of a Highly Visual Mammal , 2005, The Journal of Neuroscience.

[34]  S. Schanberg,et al.  Visual Receptive Fields of Neurons in Inferotemporal Cortex of the Monkey , 2005 .

[35]  Daniel L. Schacter,et al.  Spatial Representation in the Entorhinal Cortex , 2004 .

[36]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[37]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[39]  E. Kandel The molecular biology of memory storage: a dialog between genes and synapses. , 2001, Bioscience reports.

[40]  R. S. Jones,et al.  Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro , 2000, Neuroscience.

[41]  M. Wilson,et al.  Trajectory Encoding in the Hippocampus and Entorhinal Cortex , 2000, Neuron.

[42]  J. O’Keefe,et al.  Modeling place fields in terms of the cortical inputs to the hippocampus , 2000, Hippocampus.

[43]  D. Amaral,et al.  Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus , 1998, The Journal of comparative neurology.

[44]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[45]  W E Skaggs,et al.  Deciphering the hippocampal polyglot: the hippocampus as a path integration system. , 1996, The Journal of experimental biology.

[46]  B. McNaughton,et al.  Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex , 1995, Journal of Neuroscience Methods.

[47]  Terrence J. Sejnowski,et al.  ASSOCIATIVE MEMORY AND HIPPOCAMPAL PLACE CELLS , 1995 .

[48]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[49]  R. Muller,et al.  The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[51]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[52]  B. McNaughton,et al.  Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. , 1990, Progress in brain research.

[53]  A. Turing,et al.  The chemical basis of morphogenesis. 1953. , 1990, Bulletin of mathematical biology.

[54]  M. Witter,et al.  Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region , 1989, Progress in Neurobiology.

[55]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[57]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[58]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[59]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[60]  R. F. Thompson,et al.  The search for the engram. , 1976, The American psychologist.

[61]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[62]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[63]  T. Bliss,et al.  Lamellar organization of hippocampal pathways. , 1971, Experimental brain research.

[64]  U. Essmann,et al.  The direct observation of individual flux lines in type II superconductors , 1967 .

[65]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[66]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[67]  Alexei Abrikosov,et al.  Magnetic properties of superconductors of the second group , 1956 .

[68]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[69]  K. Lashley Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain , 1965 .