Temporal Sequence Compression by an Integrate-and-Fire Model of Hippocampal Area CA3

[1]  Ali A. Minai,et al.  Sequence Learning in a Single Trial , 1993 .

[2]  William B. Levy,et al.  The dynamics of sparse random networks , 1993, Biological Cybernetics.

[3]  J. O’Keefe,et al.  Hippocampal place units in the freely moving rat: Why they fire where they fire , 1978, Experimental Brain Research.

[4]  W. Levy,et al.  Controlling activity fluctuations in large, sparsely connected random networks , 2000, Network.

[5]  William B. Levy,et al.  Sequence compression by a hippocampal model: a functional dissection , 1998 .

[6]  M. Hasselmo,et al.  GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. , 1997, Journal of neurophysiology.

[7]  William B Levy,et al.  A neural network model of hippocampally mediated trace conditioning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[8]  D. Touretzky,et al.  Cognitive maps beyond the hippocampus , 1997, Hippocampus.

[9]  L. F. Abbott,et al.  A Model of Spatial Map Formation in the Hippocampus of the Rat , 1999, Neural Computation.

[10]  B. McNaughton,et al.  Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model , 1998, Hippocampus.

[11]  J. Lisman,et al.  Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. , 1996, Learning & memory.

[12]  Xiangbao Wu,et al.  The relationship of local context codes to sequence length memory capacity. , 1996, Network.

[13]  B. McNaughton,et al.  Replay of Neuronal Firing Sequences in Rat Hippocampus During Sleep Following Spatial Experience , 1996, Science.

[14]  G Buzsáki,et al.  The hippocampo-neocortical dialogue. , 1996, Cerebral cortex.

[15]  I. Whishaw,et al.  Evidence for extrahippocampal involvement in place learning and hippocampal involvement in path integration , 1996, Hippocampus.

[16]  B. McNaughton,et al.  Modeling the spontaneous reactivation of experience‐specific hippocampal cell assembles during sleep , 1996, Hippocampus.

[17]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[18]  W E Skaggs,et al.  Deciphering the hippocampal polyglot: the hippocampus as a path integration system. , 1996, The Journal of experimental biology.

[19]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[20]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[21]  J E Lisman,et al.  Storage of 7 +/- 2 short-term memories in oscillatory subcycles , 1995, Science.

[22]  H. Craig Heller,et al.  Restoration of brain energy metabolism as the function of sleep , 1995, Progress in Neurobiology.

[23]  N. Spruston,et al.  Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. , 1995, The Journal of physiology.

[24]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  H Eichenbaum,et al.  Selective damage to the hippocampal region blocks long‐term retention of a natural and nonspatial stimulus‐stimulus association , 1995, Hippocampus.

[26]  William B. Levy,et al.  Another network model bites the dust: Entorhinal inputs are no more than weakly excitatory in the hippocampal CA1 region , 1995, Hippocampus.

[27]  William B. Levy,et al.  Unification Of Hippocampal Function Via Computational/Encoding Considerations , 1995 .

[28]  C. Bernard,et al.  Model of local connectivity patterns in CA3 and CA1 areas of the hippocampus , 1994, Hippocampus.

[29]  G. Buzsáki,et al.  Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  B. McNaughton,et al.  Reactivation of hippocampal ensemble memories during sleep. , 1994, Science.

[31]  P Alvarez,et al.  Memory consolidation and the medial temporal lobe: a simple network model. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[33]  William B. Levy,et al.  Setting the Activity Level in Sparse Random Networks , 1994, Neural Computation.

[34]  Temporal Requirement for Associative LTP in the Dentate. Dependence On Modeled Rm and Ri Values , 1994 .

[35]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[36]  M. Witter Organization of the entorhinal—hippocampal system: A review of current anatomical data , 1993, Hippocampus.

[37]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[38]  R. Dingledine,et al.  Dual-component miniature excitatory synaptic currents in rat hippocampal CA3 pyramidal neurons. , 1992, Journal of neurophysiology.

[39]  I. Módy,et al.  Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. , 1992, Journal of neurophysiology.

[40]  G. Buzsáki,et al.  High-frequency network oscillation in the hippocampus. , 1992, Science.

[41]  R. Muller,et al.  The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  E T Rolls,et al.  Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network , 1992, Hippocampus.

[43]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[44]  R. Miles,et al.  Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea‐pig in vitro. , 1990, The Journal of physiology.

[45]  D. Amaral,et al.  Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat , 1990, The Journal of comparative neurology.

[46]  W. Levy,et al.  Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. , 1990, Journal of neurophysiology.

[47]  D. Amaral,et al.  Neurons, numbers and the hippocampal network. , 1990, Progress in brain research.

[48]  G. Buzsáki Two-stage model of memory trace formation: A role for “noisy” brain states , 1989, Neuroscience.

[49]  R. Muller,et al.  The firing of hippocampal place cells predicts the future position of freely moving rats , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  H. Eichenbaum,et al.  Spatial and behavioral correlates of hippocampal neuronal activity , 1989 .

[51]  P. Best,et al.  Place cells and silent cells in the hippocampus of freely-behaving rats , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  W. Levy A computational approach to hippocampal function , 1989 .

[53]  H. Eichenbaum,et al.  Spatial and behavioral correlates of hippocampal neuronal activity. , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  B. L. McNaughton,et al.  Suppression of hippocampal synaptic plasticity during slow-wave sleep , 1987, Brain Research.

[55]  G. K. Smith,et al.  Spontaneous EEG spikes in the normal hippocampus. I. Behavioral correlates, laminar profiles and bilateral synchrony. , 1987, Electroencephalography and clinical neurophysiology.

[56]  G. Buzsáki Hippocampal sharp waves: Their origin and significance , 1986, Brain Research.

[57]  B. Gustafsson,et al.  Hippocampal long-lasting potentiation produced by pairing single volleys and brief conditioning tetani evoked in separate afferents , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  G. Buzsáki Feed-forward inhibition in the hippocampal formation , 1984, Progress in Neurobiology.

[59]  G. Buzsáki Long-term changes of hippocampal sharp-waves following high frequency afferent activation , 1984, Brain Research.

[60]  H Eichenbaum,et al.  Afferent connections of the perirhinal cortex in the rat , 1983, The Journal of comparative neurology.

[61]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[62]  O. Steward,et al.  Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat , 1976, The Journal of comparative neurology.

[63]  J. B. Ranck,et al.  Behavioral Correlates and Firing Repertoires of Neurons in the Dorsal Hippocampal Formation and Septum of Unrestrained Rats , 1975 .

[64]  J. B. Ranck,et al.  Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. , 1973, Experimental neurology.

[65]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[66]  Daniella Coker,et al.  The effect of strychnine sulfate on maze learning as a function of task difficulty , 1967 .

[67]  L. Petrinovich,et al.  THE EFFECT OF STRYCHNINE SULPHATE ON MAZE-LEARNING , 1959 .