Evolutionary multiobjective optimization

Many real-world search and optimization problems are naturally posed as non-linear programming problems having multiple conflicting objectives. Due to lack of suitable solution techniques, such problems are usually artificially converted into a single-objective problem and solved. The difficulty arises because multi-objective optimization problems give rise to a set of Pareto-optimal solutions, each corresponding to a certain trade-off among the objectives. It then becomes important to find not just one Pareto-optimal solution but as many of them as possible. Classical methods are found to be not efficient because they require repetitive applications to find multiple Pareto-optimal solutions and in some occasions repetitive applications do not guarantee finding distinct Pareto-optimal solutions. The population approach of evolutionary algorithms (EAs) allows an efficient way to find multiple Pareto-optimal solutions simultaneously in a single simulation run. In this tutorial, we shall contrast the differences in philosophies between classical and evolutionary multi-objective methodologies and provide adequate fundamentals needed to understand and use both methodologies in practice. Particularly, major state-of-the-art evolutionary multi-objective optimization (EMO) methodologies will be presented and various related issues such as performance assessment and preference articulation will be discussed. Thereafter, three main application areas of EMO will be discussed with adequate case studies from practice -- (i) applications showing better decision-making abilities through EMO, (ii) applications exploiting the multitude of trade-off solutions of EMO in extracting useful information in a problem, and (iii) applications showing better problem-solving abilities in various other tasks (such as, reducing bloating, solving single-objective constraint handling, and others). Clearly, EAs have a niche in solving multi-objective optimization problems compared to classical methods. This is why EMO methodologies are getting a growing attention in the recent past. Since this is a comparatively new field of research, in this tutorial, a number of future challenges in the research and application of multi-objective optimization will also be discussed. This tutorial is aimed for both novices and users of EMO. Those without any knowledge in EMO will have adequate ideas of the procedures and their importance in computing and problem-solving tasks. Those who have been practicing EMO will also have enough ideas and materials for future research, know state-of-the-art results and techniques, and make a comparative evaluation of their research.

[1]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[2]  G. Rudolph On a multi-objective evolutionary algorithm and its convergence to the Pareto set , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[3]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[4]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  Neil A. Thacker,et al.  Optimising object recognition parameters using a parallel multiobjective genetic algorithm , 1997 .

[7]  D. Dentcheva,et al.  On several concepts for ɛ-efficiency , 1994 .

[8]  Kalyanmoy Deb,et al.  Faster Hypervolume-Based Search Using Monte Carlo Sampling , 2008, MCDM.

[9]  Frank Neumann,et al.  Do additional objectives make a problem harder? , 2007, GECCO '07.

[10]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[11]  Evan J. Hughes,et al.  Radar Waveform Optimisation as a Many-Objective Application Benchmark , 2007, EMO.

[12]  António Gaspar-Cunha,et al.  Robustness in multi-objective optimization using evolutionary algorithms , 2008, Comput. Optim. Appl..

[13]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[14]  M. Jensen Helper-Objectives: Using Multi-Objective Evolutionary Algorithms for Single-Objective Optimisation , 2004 .

[15]  Hisao Ishibuchi,et al.  Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[16]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[17]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[18]  El-Ghazali Talbi,et al.  Using the Multi-Start and Island Models for Parallel Multi-Objective Optimization on the Computational Grid , 2006, 2006 Second IEEE International Conference on e-Science and Grid Computing (e-Science'06).

[19]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[20]  Eckart Zitzler,et al.  Handling Uncertainty in Indicator-Based Multiobjective Optimization , 2006 .

[21]  Edwin D. de Jong,et al.  Multi-Objective Methods for Tree Size Control , 2003, Genetic Programming and Evolvable Machines.

[22]  Günter Rudolph,et al.  Parallel Approaches for Multiobjective Optimization , 2008, Multiobjective Optimization.

[23]  Sean Luke,et al.  Alternative Bloat Control Methods , 2004, GECCO.

[24]  Lothar Thiele,et al.  Quality Assessment of Pareto Set Approximations , 2008, Multiobjective Optimization.

[25]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[26]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[27]  Robert M. Hubley,et al.  Evolutionary algorithms for the selection of single nucleotide polymorphisms , 2003, BMC Bioinformatics.

[28]  Ingo Wegener,et al.  Fitness Landscapes Based on Sorting and Shortest Paths Problems , 2002, PPSN.

[29]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[30]  Kalyanmoy Deb,et al.  Towards estimating nadir objective vector using evolutionary approaches , 2006, GECCO.

[31]  Edwin D. de Jong,et al.  Reducing bloat and promoting diversity using multi-objective methods , 2001 .

[32]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[33]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[34]  Eckart Zitzler,et al.  Dimensionality Reduction in Multiobjective Optimization: The Minimum Objective Subset Problem , 2006, OR.

[35]  Jürgen Branke,et al.  Interactive Multiobjective Evolutionary Algorithms , 2008, Multiobjective Optimization.

[36]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[37]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[38]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[39]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[40]  Jonathan A. Wright,et al.  An Infeasibility Objective for Use in Constrained Pareto Optimization , 2001, EMO.

[41]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[42]  Anikó Ekárt,et al.  Selection Based on the Pareto Nondomination Criterion for Controlling Code Growth in Genetic Programming , 2001, Genetic Programming and Evolvable Machines.

[43]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[44]  Lucas Bradstreet,et al.  A Fast Incremental Hypervolume Algorithm , 2008, IEEE Transactions on Evolutionary Computation.

[45]  Andrzej Jaszkiewicz,et al.  On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..

[46]  Lothar Thiele,et al.  Conflicting Criteria in Embedded System Design , 2000, IEEE Des. Test Comput..

[47]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[48]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[49]  Mikkel T. Jensen,et al.  Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms , 2003, IEEE Trans. Evol. Comput..

[50]  Francesco Mason,et al.  Genetic Algorithm with Redundancies for the Vehicle Scheduling Problem , 1995 .

[51]  Jongsoo Lee,et al.  Parallel Genetic Algorithm Implementation in Multidisciplinary Rotor Blade Design , 1996 .

[52]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[53]  Tong Heng Lee,et al.  Multiobjective Evolutionary Algorithms and Applications , 2005, Advanced Information and Knowledge Processing.

[54]  Lothar Thiele,et al.  Multiobjective genetic programming: reducing bloat using SPEA2 , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[55]  Jürgen Teich,et al.  Comparison of data structures for storing Pareto-sets in MOEAs , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[56]  Eckart Zitzler,et al.  Reducing Bloat in GP with Multiple Objectives , 2008, Multiobjective Problem Solving from Nature.

[57]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[58]  Tobias Friedrich,et al.  Approximating the Volume of Unions and Intersections of High-Dimensional Geometric Objects , 2008, ISAAC.

[59]  Jürgen Teich,et al.  Pareto-Front Exploration with Uncertain Objectives , 2001, EMO.

[60]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[61]  Marco Laumanns,et al.  Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions , 2004, IEEE Transactions on Evolutionary Computation.

[62]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[63]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[64]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[65]  Richard A. Watson,et al.  Reducing Local Optima in Single-Objective Problems by Multi-objectivization , 2001, EMO.

[66]  Daisuke Sasaki,et al.  Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map , 2003, EMO.

[67]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[68]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[69]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[70]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[71]  Eckart Zitzler,et al.  Pattern identification in pareto-set approximations , 2008, GECCO '08.

[72]  Marco Laumanns,et al.  An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method , 2006, Eur. J. Oper. Res..

[73]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[74]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[75]  Lily Rachmawati,et al.  Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[76]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[77]  Paolo Serafini,et al.  Some Considerations about Computational Complexity for Multi Objective Combinatorial Problems , 1987 .

[78]  Carlos M. Fonseca,et al.  Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.

[79]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[80]  Lothar Thiele,et al.  Chapter 4 – Design Space Exploration of Network Processor Architectures , 2003 .

[81]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[82]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[83]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[84]  David W. Corne,et al.  Instance Generators and Test Suites for the Multiobjective Quadratic Assignment Problem , 2003, EMO.

[85]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[86]  Joshua D. Knowles,et al.  Multiobjectivization by Decomposition of Scalar Cost Functions , 2008, PPSN.

[87]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[88]  W. Habenicht,et al.  Quad Trees, a Datastructure for Discrete Vector Optimization Problems , 1983 .

[89]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[90]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[91]  Evan J. Hughes,et al.  Evolutionary Multi-objective Ranking with Uncertainty and Noise , 2001, EMO.

[92]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[93]  Marco Laumanns,et al.  Multiobjective Groundwater Management Using Evolutionary Algorithms , 2009, IEEE Transactions on Evolutionary Computation.

[94]  Marco Laumanns,et al.  Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem , 2004, Natural Computing.

[95]  Bernhard Sendhoff,et al.  On Test Functions for Evolutionary Multi-objective Optimization , 2004, PPSN.

[96]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[97]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.