Learning Inductive Riemannian Manifold in Abstract Form by Modeling Embedded Dynamical System

Manifold learning algorithms do not extract the structure of datasets in an abstract form or they do not have high performance for complex data.In this paper, a method for Learning an Inductive Riemannian Manifold in Abstract form (LIRMA) is presented in which the structure of patterns is determined by solving the embedded dynamical system of the patterns. In order to model corresponding system, the true sequence of patterns is estimated using a topology preserving method. LIRMA has the advantage of being an inductive method with low complexity. Additionally, it is a topology preserving method with respect to quantitative measures.

[1]  Christopher J. C. Burges,et al.  Dimension Reduction: a Guided Tour , 2009 .

[2]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[3]  Jingchao Chen An Improvement on Tree Selection Sort , 2002, ALENEX.

[4]  Paul A. Fishwick,et al.  Handbook of Dynamic System Modeling , 2007 .

[5]  Olga Kayo,et al.  Locally linear embedding algorithm: extensions and applications , 2006 .

[6]  Hongbin Zha,et al.  Riemannian Manifold Learning , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Lennart Ljung,et al.  Modeling Of Dynamic Systems , 1994 .

[8]  Katsuhiko Ogata,et al.  Discrete-time control systems (2nd ed.) , 1995 .

[9]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[10]  Bogdan Raducanu,et al.  A supervised non-linear dimensionality reduction approach for manifold learning , 2012, Pattern Recognit..

[11]  Masahiro Mizuta,et al.  Dimension Reduction Methods , 2012 .

[12]  Gintautas Dzemyda,et al.  Topology Preservation Measures in the Visualization of Manifold-Type Multidimensional Data , 2009, Informatica.

[13]  Katsuhiko Ogata,et al.  Discrete-time control systems , 1987 .

[14]  R. Maronna Alan Julian Izenman (2008): Modern Multivariate Statistical Techniques: Regression, Classification and Manifold Learning , 2011 .

[15]  Anil K. Jain,et al.  Clustering, dimensionality reduction, and side information , 2006 .

[16]  Hongyuan Zha,et al.  Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment , 2022 .

[17]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[18]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[19]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[20]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[21]  Mikhail Belkin,et al.  Problems of learning on manifolds , 2003 .

[22]  P. N. Paraskevopoulos,et al.  Modern Control Engineering , 2001 .

[23]  Xiangke Liao,et al.  Incremental manifold learning by spectral embedding methods , 2011, Pattern Recognit. Lett..

[24]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[25]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Hong Qiao,et al.  An improved local tangent space alignment method for manifold learning , 2011, Pattern Recognit. Lett..

[27]  S. Axler Linear Algebra Done Right , 1995, Undergraduate Texts in Mathematics.

[28]  Alan Julian Izenman,et al.  Modern Multivariate Statistical Techniques , 2008 .

[29]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[30]  Kuldip K. Paliwal,et al.  Fast principal component analysis using fixed-point algorithm , 2007, Pattern Recognit. Lett..

[31]  Deniz Erdogmus,et al.  Locally Defined Principal Curves and Surfaces , 2011, J. Mach. Learn. Res..

[32]  Martin A. Riedmiller,et al.  Incremental GRLVQ: Learning relevant features for 3D object recognition , 2008, Neurocomputing.