The global solver in the LINDO API

The global solver in the LINDO Application Programming Interface (LINDO API) finds guaranteed global optima to nonconvex, nonlinear and integer mathematical models using the branch and bound/relax approach. We describe (a) the class of problems for which it tends to be appropriate; (b) how to access it directly via the LINDO API or via various modelling language front ends; (c) heuristics used for finding good initial solutions; (d) methods for constructing easily solved relaxations; (e) branching rules for splitting a problem into more easily solved subproblems; and (f) some illustrative computational results.

[1]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[2]  János D. Pintér,et al.  Global optimization in action , 1995 .

[3]  A. Shapiro,et al.  Stochastic mathematical programs with equilibrium constraints, modelling and sample average approximation , 2008 .

[4]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[5]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[6]  Linus Schrage,et al.  Implementation and Testing of a Branch-and-Bound Based Method for Deterministic Global Optimization: Operations Research Applications , 2004 .

[7]  Fred W. Glover,et al.  Scatter Search and Local Nlp Solvers: A Multistart Framework for Global Optimization , 2006, INFORMS J. Comput..

[8]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[9]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[10]  J. E. Falk,et al.  An Algorithm for Separable Nonconvex Programming Problems , 1969 .

[11]  Michael Patriksson,et al.  Stochastic mathematical programs with equilibrium constraints , 1999, Oper. Res. Lett..

[12]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[13]  G. Dantzig ON THE SIGNIFICANCE OF SOLVING LINEAR PROGRAMMING PROBLEMS WITH SOME INTEGER VARIABLES , 1960 .