Expanding from Discrete to Continuous Estimation of Distribution Algorithms: The IDEA

The direct application of statistics to stochastic optimization based on iterated density estimation has become more important and present in evolutionary computation over the last few years. The estimation of densities over selected samples and the sampling from the resulting distributions, is a combination of the recombination and mutation steps used in evolutionary algorithms. We introduce the framework named IDEA to formalize this notion. By combining continuous probability theory with techniques from existing algorithms, this framework allows us to define new continuous evolutionary optimization algorithms.

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[4]  Rich Caruana,et al.  Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.

[5]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[6]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[7]  Louise Travé-Massuyès,et al.  Telephone Network Traffic Overloading Diagnosis and Evolutionary Computation Techniques , 1997, Artificial Evolution.

[8]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[9]  Shumeet Baluja,et al.  Using Optimal Dependency-Trees for Combinational Optimization , 1997, ICML.

[10]  Michèle Sebag,et al.  Extending Population-Based Incremental Learning to Continuous Search Spaces , 1998, PPSN.

[11]  Rajkumar Roy,et al.  Advances in Soft Computing: Engineering Design and Manufacturing , 1998 .

[12]  Heinz Mühlenbein,et al.  FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions , 1999, Evolutionary Computation.

[13]  Dirk Thierens,et al.  Linkage Information Processing In Distribution Estimation Algorithms , 1999, GECCO.

[14]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[15]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[16]  Marcus Gallagher,et al.  Real-valued Evolutionary Optimization using a Flexible Probability Density Estimator , 1999, GECCO.

[17]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[18]  P. Bosman,et al.  An algorithmic framework for density estimation based evolutionary algorithms , 1999 .

[19]  Heinz Mühlenbein,et al.  Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.

[20]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[21]  P. Bosman,et al.  An Algorithmi Framework For Density Estimation Based Evolutionary Algorithms , 1999 .

[22]  P. Bosman,et al.  IDEAs based on the normal kernels probability density function , 2000 .

[23]  P. Bosman,et al.  Continuous iterated density estimation evolutionary algorithms within the IDEA framework , 2000 .

[24]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[25]  Graham J. Wills,et al.  Introduction to graphical modelling , 1995 .