2006: Celebrating 75 Years of AI - History and Outlook: The Next 25 Years

When Kurt Godel layed the foundations of theoretical computer science in 1931, he also introduced essential concepts of the theory of Artificial Intelligence (AI). Although much of subsequent AI research has focused on heuristics, which still play a major role in many practical AI applications, in the new millennium AI theory has finally become a full-fledged formal science, with important optimality results for embodied agents living in unknown environments, obtained through a combination of theory a la Godel and probability theory. Here we look back at important milestones of AI history, mention essential recent results, and speculate about what we may expect from the next 25 years, emphasizing the significance of the ongoing dramatic hardware speedups, and discussing Godel-inspired, self-referential, self-improving universal problem solvers.

[1]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[4]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[5]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[6]  Reinhold Behringer,et al.  The seeing passenger car 'VaMoRs-P' , 1994, Proceedings of the Intelligent Vehicles '94 Symposium.

[7]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[8]  Jürgen Schmidhuber,et al.  Training Recurrent Networks by Evolino , 2007, Neural Computation.

[9]  Jürgen Schmidhuber,et al.  Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks , 2006, ICML.

[10]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[11]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[12]  Risto Miikkulainen,et al.  Efficient Non-linear Control Through Neuroevolution , 2006, ECML.

[13]  A. Kolmogoroff Grundbegriffe der Wahrscheinlichkeitsrechnung , 1933 .

[14]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[15]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[16]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Risto Miikkulainen,et al.  Active Guidance for a Finless Rocket Using Neuroevolution , 2003, GECCO.

[18]  Rolf Pfeifer,et al.  Understanding intelligence , 2020, Inequality by Design.

[19]  Vaclav Smil,et al.  Detonator of the population explosion , 1999, Nature.

[20]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[21]  Dr. Marcus Hutter,et al.  Universal artificial intelligence , 2004 .

[22]  Jürgen Schmidhuber,et al.  The Speed Prior: A New Simplicity Measure Yielding Near-Optimal Computable Predictions , 2002, COLT.

[23]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[24]  K. Popper All life is problem solving , 1997 .

[25]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[26]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[27]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[28]  Jürgen Schmidhuber,et al.  Curious model-building control systems , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[29]  Barak A. Pearlmutter Gradient calculations for dynamic recurrent neural networks: a survey , 1995, IEEE Trans. Neural Networks.

[30]  SolomonoffR. Complexity-based induction systems , 2006 .

[31]  Xin Yao,et al.  A review of evolutionary artificial neural networks , 1993, Int. J. Intell. Syst..

[32]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[33]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[34]  H. Ulbrich,et al.  Sensor system and trajectory control of a biped robot , 2004, The 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC '04..

[35]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[36]  Ray J. Solomonoff,et al.  Complexity-based induction systems: Comparisons and convergence theorems , 1978, IEEE Trans. Inf. Theory.

[37]  Jürgen Schmidhuber,et al.  New Millennium AI and the Convergence of History: Update of 2012 , 2012 .

[38]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[39]  Jürgen Schmidhuber,et al.  Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts , 2006, Connect. Sci..