Characterizing and efficiently computing quadrangulations of planar point sets

Abstract Given a set S of n points in the plane, a quadrangulation of S is a planar subdivision whose vertices are the points of S, whose outer face is the convex hull of S, and every face of the subdivision (except possibly the outer face) is a quadrilateral. We show that S admits a quadrangulation if and only if S does not have an odd number of extreme points. If S admits a quadrangulation, we present an algorithm that computes a quadrangulation of S in O(nlogn) time even in the presence of collinear points. If S does not admit a quadrangulation, then our algorithm can quadrangulate S with the addition of one extra point, which is optimal. We also provide an Ω(n log n) time lower bound for the problem. Our results imply that a k-angulation of a set of points can be achieved with the addition of at most k − 3 extra points within the same time bound. Finally, we present an experimental comparison between three quadrangulation algorithms which shows that the Spiraling Rotating Calipers (SRC) algorithm produces quadrangulations with the greatest number of convex quadrilaterals as well as those with the smallest difference between the average minimum and maximum angle over all quadrangles.

[1]  Steven Skiena,et al.  Hamilton Triangulations for Fast Rendering , 1994, ESA.

[2]  Larry L. Schumaker,et al.  Computing optimal triangulations using simulated annealing , 1993, Comput. Aided Geom. Des..

[3]  Qiu Pei‐yong,et al.  Electron beam exposure system , 1979 .

[4]  Godfried T. Toussaint,et al.  NEW RESULTS IN COMPUTATIONAL GEOMETRY RELEVANT TO PATTERN RECOGNITION IN PRACTICE , 1986 .

[5]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[6]  Bernard Chazelle,et al.  On the convex layers of a planar set , 1985, IEEE Trans. Inf. Theory.

[7]  Yuan-Fang Wang,et al.  Surface reconstruction and representation of 3-D scenes , 1986, Pattern Recognit..

[8]  Anna Lubiw,et al.  Decomposing polygonal regions into convex quadrilaterals , 1985, SCG '85.

[9]  Kurt Mehlhorn,et al.  Dynamic point location in general subdivisions , 1992, SODA '92.

[10]  K. Wagner Bemerkungen zum Vierfarbenproblem. , 1936 .

[11]  Alain Fournier,et al.  Triangulating Simple Polygons and Equivalent Problems , 1984, TOGS.

[12]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[13]  John M. Sullivan,et al.  Automatic conversion of triangular finite element meshes to quadrilateral elements , 1991 .

[14]  Subhash Suri,et al.  Applications of a semi-dynamic convex hull algorithm , 1990, BIT.

[15]  Tianjun Wang,et al.  A C2-quintic spline interpolation scheme on triangulation , 1992, Comput. Aided Geom. Des..

[16]  K. Ho-Le,et al.  Finite element mesh generation methods: a review and classification , 1988 .

[17]  J. Sack,et al.  Minimum Decompositions of Polygonal Objects , 1985 .

[18]  Roberto Tamassia,et al.  Fully Dynamic Point Location in a Monotone Subdivision , 1989, SIAM J. Comput..

[19]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[20]  N. Sugiyama,et al.  Electron-beam exposure system AMDES , 1979 .

[21]  Subhash Suri,et al.  Applications of a semi-dynamic convex hull algorithm , 1992, BIT Comput. Sci. Sect..

[22]  Daniel Q. Naiman Pattern Recognition in Practice II , 1988 .

[23]  C. Board,et al.  Display and analysis of spatial data , 1975 .

[24]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[25]  E. Heighway A mesh generator for automatically subdividing irregular polygons into quadrilaterals , 1983 .

[26]  G. Toussaint Solving geometric problems with the rotating calipers , 1983 .

[27]  M. Shephard,et al.  Geometry-based fully automatic mesh generation and the delaunay triangulation , 1988 .

[28]  Godfried T. Toussaint,et al.  Guard Placement in Rectilinear Polygons , 1988 .

[29]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[30]  Micha Sharir,et al.  Piecewise-linear interpolation between polygonal slices , 1994, SCG '94.

[31]  J. Kahn,et al.  Traditional Galleries Require Fewer Watchmen , 1983 .

[32]  Hans Hagen,et al.  Least squares surface approximation to scattered data using multiquadratic functions , 1994, Adv. Comput. Math..

[33]  Gregory M. Nielson,et al.  Scattered data modeling , 1993, IEEE Computer Graphics and Applications.

[34]  Takao Asano,et al.  Partitioning a polygonal region into trapezoids , 1986, JACM.

[35]  Jan van Leeuwen,et al.  Algorithms — ESA '94 , 1994, Lecture Notes in Computer Science.