Mechanism design via machine learning

We use techniques from sample-complexity in machine learning to reduce problems of incentive-compatible mechanism design to standard algorithmic questions, for a wide variety of revenue-maximizing pricing problems. Our reductions imply that for these problems, given an optimal (or /spl beta/-approximation) algorithm for the standard algorithmic problem, we can convert it into a (1 + /spl epsi/)-approximation (or /spl beta/(1 +/spl epsi/)-approximation) for the incentive-compatible mechanism design problem, so long as the number of bidders is sufficiently large as a function of an appropriate measure of complexity of the comparison class of solutions. We apply these results to the problem of auctioning a digital good, the attribute auction problem, and to the problem of item-pricing in unlimited-supply combinatorial auctions. From a learning perspective, these settings present several challenges: in particular the loss function is discontinuous and asymmetric, and the range of bidders' valuations may be large.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[3]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[4]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[5]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[6]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[7]  Peter L. Bartlett,et al.  Learning in Neural Networks: Theoretical Foundations , 1999 .

[8]  Peter L. Bartlett,et al.  Neural Network Learning - Theoretical Foundations , 1999 .

[9]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[10]  Andrew V. Goldberg,et al.  Competitive Auctions for Multiple Digital Goods , 2001, ESA.

[11]  Vladimir Koltchinskii,et al.  Rademacher penalties and structural risk minimization , 2001, IEEE Trans. Inf. Theory.

[12]  Luc Devroye,et al.  Combinatorial methods in density estimation , 2001, Springer series in statistics.

[13]  Andrew V. Goldberg,et al.  Competitive auctions and digital goods , 2001, SODA '01.

[14]  Amos Fiat,et al.  Competitive generalized auctions , 2002, STOC '02.

[15]  Peter L. Bartlett,et al.  Vapnik-Chervonenkis dimension of neural nets , 2003 .

[16]  Vijay Kumar,et al.  Online learning in online auctions , 2003, SODA '03.

[17]  Andrew V. Goldberg,et al.  Competitiveness via consensus , 2003, SODA '03.

[18]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[19]  Yossi Azar,et al.  Reducing truth-telling online mechanisms to online optimization , 2003, STOC '03.

[20]  Rajeev Motwani,et al.  Algorithms for Multi-product Pricing , 2004, ICALP.

[21]  Anna R. Karlin,et al.  A Lower Bound on the Competitive Ratio of Truthful Auctions , 2004, STACS.

[22]  O. Bousquet THEORY OF CLASSIFICATION: A SURVEY OF RECENT ADVANCES , 2004 .

[23]  Jason D. Hartline,et al.  From optimal limited to unlimited supply auctions , 2005, EC '05.

[24]  Andrew V. Goldberg,et al.  Collusion-resistant mechanisms for single-parameter agents , 2005, SODA '05.

[25]  Venkatesan Guruswami,et al.  On profit-maximizing envy-free pricing , 2005, SODA '05.

[26]  Avrim Blum,et al.  Near-optimal online auctions , 2005, SODA '05.

[27]  Vladlen Koltun,et al.  Near-Optimal Pricing in Near-Linear Time , 2005, WADS.

[28]  Tuomas Sandholm,et al.  Approximating Revenue-Maximizing Combinatorial Auctions , 2005, AAAI.

[29]  Maria-Florina Balcan,et al.  Approximation Algorithms for Item Pricing , 2005 .

[30]  S. Boucheron,et al.  Theory of classification : a survey of some recent advances , 2005 .

[31]  Piotr Krysta,et al.  Single-minded unlimited supply pricing on sparse instances , 2006, SODA '06.

[32]  Maria-Florina Balcan,et al.  Approximation algorithms and online mechanisms for item pricing , 2006, EC '06.

[33]  Jason D. Hartline,et al.  Knapsack auctions , 2006, SODA '06.

[34]  U. Feige,et al.  Combination can be hard: approximability of the unique coverage problem , 2006, SODA 2006.

[35]  Erik D. Demaine,et al.  Combination can be hard: approximability of the unique coverage problem , 2006, SODA '06.