Can Synthetic Data Improve Object Detection Results for Remote Sensing Images?

Deep learning approaches require enough training samples to perform well, but it is a challenge to collect enough real training data and label them manually. In this letter, we propose the use of realistic synthetic data with a wide distribution to improve the performance of remote sensing image aircraft detection. Specifically, to increase the variability of synthetic data, we randomly set the parameters during rendering, such as the size of the instance and the class of background images. In order to make the synthetic images more realistic, we then refine the synthetic images at the pixel level using CycleGAN with real unlabeled images. We also fine-tune the model with a small amount of real data, to obtain a higher accuracy. Experiments on NWPU VHR-10, UCAS-AOD and DIOR datasets demonstrate that the proposed method can be applied for augmenting insufficient real data.

[1]  Wojciech Zaremba,et al.  Domain randomization for transferring deep neural networks from simulation to the real world , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Yi Li,et al.  R-FCN: Object Detection via Region-based Fully Convolutional Networks , 2016, NIPS.

[4]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[5]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Antonio M. López,et al.  The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Jiebo Luo,et al.  DOTA: A Large-Scale Dataset for Object Detection in Aerial Images , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[9]  Luc Van Gool,et al.  Domain Adaptive Faster R-CNN for Object Detection in the Wild , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[10]  Yiming Yan,et al.  A Novel Data Augmentation Method for Detection of Specific Aircraft in Remote Sensing RGB Images , 2019, IEEE Access.

[11]  Matti Pietikäinen,et al.  Deep Learning for Generic Object Detection: A Survey , 2018, International Journal of Computer Vision.

[12]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[13]  Lei Guo,et al.  Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-Level Feature Learning , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Vladlen Koltun,et al.  Playing for Data: Ground Truth from Computer Games , 2016, ECCV.

[15]  Qixiang Ye,et al.  Orientation robust object detection in aerial images using deep convolutional neural network , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[16]  Varun Jampani,et al.  Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[17]  Gang Wan,et al.  Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark , 2020, ISPRS Journal of Photogrammetry and Remote Sensing.

[18]  Kate Saenko,et al.  Learning Deep Object Detectors from 3D Models , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[19]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[20]  Kate Saenko,et al.  Synthetic to Real Adaptation with Generative Correlation Alignment Networks , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[21]  Andreas Geiger,et al.  Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes , 2017, International Journal of Computer Vision.

[22]  Junwei Han,et al.  Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.