A dynamic multiparty quantum direct secret sharing based on generalized GHZ states

This paper proposes a new dynamic multiparty quantum direct secret sharing (DQDSS) using mutually unbiased measurements based on generalized GHZ states. Without any unitary operations, an agent can obtain a shadow of the secret by simply performing a measurement on single photons. In the proposed scheme, multiple agents can be added or deleted and the shared secret need not be changed. Our DQDSS scheme has several advantages. The dealer is not required to retain any photons and can further share a predetermined key instead of a random key to the agents. Agents can update their shadows periodically, and the dealer does not need to be online. Furthermore, the proposed scheme can resist not only the existing attacks, but also cheating attacks from dishonest agents. Hence, compared to some famous DQSS schemes, the proposed scheme is more efficient and more practical. Finally, we establish a mathematical model about the efficiency and security of the scheme and perform simulation analyses with different parameters using MATLAB.

[1]  Run-hua Shi,et al.  Quantum secret sharing between multiparty and multiparty with Bell states and Bell measurements , 2010 .

[2]  Fei Gao,et al.  Postprocessing of the Oblivious Key in Quantum Private Query , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Bin Liu,et al.  Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels , 2013 .

[4]  Xiaohua Zhu,et al.  A proactive quantum secret sharing scheme based on GHZ state , 2015 .

[5]  Tzonelih Hwang,et al.  New quantum private comparison protocol using EPR pairs , 2012, Quantum Inf. Process..

[6]  Anirban Pathak,et al.  Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement , 2016, Quantum Inf. Process..

[7]  Yong-Ming Li,et al.  Quantum secret sharing using the d-dimensional GHZ state , 2017, Quantum Inf. Process..

[8]  Tzonelih Hwang,et al.  On "multiparty quantum secret sharing with Bell states and Bell measurements" , 2010 .

[9]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[10]  Chen-Ming Bai,et al.  A New Improving Quantum Secret Sharing Scheme , 2017 .

[11]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[12]  Jun Gu,et al.  Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing , 2017, Quantum Inf. Process..

[13]  Michael A. Nielsen,et al.  Quantum Computation and Quantum Information Theory , 2000 .

[14]  Chia-Wei Tsai,et al.  Dynamic quantum secret sharing , 2013, Quantum Inf. Process..

[15]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[16]  Adam Smith,et al.  Multi-party Quantum Computation , 2001 .

[17]  Safwat Hamad,et al.  Quantum secret sharing with identity authentication based on Bell states , 2017 .

[18]  Shibin Zhang,et al.  Cryptanalysis and Improvement of the Semi-quantum Secret Sharing Protocol , 2017 .

[19]  T. Osborne,et al.  Jones index, secret sharing and total quantum dimension , 2016, 1608.02618.

[20]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[21]  Tian-Yin Wang,et al.  Cryptanalysis of dynamic quantum secret sharing , 2013, Quantum Inf. Process..

[22]  Gerardo Adesso,et al.  Unconditional security of entanglement-based continuous-variable quantum secret sharing , 2016, 1603.03224.

[23]  Su-Juan Qin,et al.  Quantum anonymous ranking , 2014 .

[24]  Shahar Dolev,et al.  A quantum secret ballot , 2006, ArXiv.

[25]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[26]  Yi Mu,et al.  Secure Multiparty Quantum Computation for Summation and Multiplication , 2016, Scientific Reports.

[27]  Richard J. Hughes,et al.  Practical free-space quantum key distribution over 10 km in daylight and at night , 2002, quant-ph/0206092.

[28]  Huawang Qin,et al.  Dynamic quantum secret sharing by using d-dimensional GHZ state , 2017, Quantum Inf. Process..

[29]  Qing Chen,et al.  Efficient construction of two-dimensional cluster states with probabilistic quantum gates , 2006 .

[30]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[31]  P. Grangier,et al.  Single photon quantum cryptography. , 2002, Physical Review Letters.

[32]  Su-Juan Qin,et al.  Dynamic quantum secret sharing , 2012 .

[33]  Ryutaroh Matsumoto,et al.  Unitary reconstruction of secret for stabilizer-based quantum secret sharing , 2017, Quantum Inf. Process..

[34]  Chun-Wei Yang,et al.  Dynamic quantum secret sharing protocol based on GHZ state , 2014, Quantum Inf. Process..

[35]  Haipeng Peng,et al.  Restricted (k, n)-threshold quantum secret sharing scheme based on local distinguishability of orthogonal multiqudit entangled states , 2017, Quantum Inf. Process..

[36]  Heinrich Saller Quantum Relativity , 2017 .

[37]  Anthony Chefles,et al.  Quantum protocols for anonymous voting and surveying , 2005, quant-ph/0504161.

[38]  Barry C. Sanders,et al.  Relativistic (2,3)-threshold quantum secret sharing , 2017 .

[39]  Gang Xu,et al.  A kind of universal quantum secret sharing protocol , 2017, Scientific Reports.

[40]  Qiaoyan Wen,et al.  Quantum key distribution without alternative measurements and rotations , 2006 .

[41]  Qing-yu Cai,et al.  Improving the capacity of the Boström-Felbinger protocol , 2003, quant-ph/0311168.

[42]  Bin Liu,et al.  Quantum private comparison employing single-photon interference , 2017, Quantum Inf. Process..

[43]  Zhen Zhang,et al.  Secret Sharing of a Quantum State. , 2016, Physical review letters.

[44]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[45]  Long Zhang,et al.  An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption , 2017, Quantum Inf. Process..

[46]  Arthur O. Pittenger,et al.  Mutually Unbiased Bases, Generalized Spin Matrices and Separability , 2003 .

[47]  Z. Yuan,et al.  Quantum key distribution over 122 km of standard telecom fiber , 2004, quant-ph/0412171.