Group Frames With Few Distinct Inner Products and Low Coherence

Frame theory has been a popular subject in the design of structured signals and codes in recent years, with applications ranging from the design of measurement matrices in compressive sensing, to spherical codes for data compression and data transmission, to spacetime codes for MIMO communications, and to measurement operators in quantum sensing. High-performance codes usually arise from designing frames whose elements have mutually low coherence. Building off the original “group frame” design of Slepian which has since been elaborated in the works of Vale and Waldron, we present several new frame constructions based on cyclic and generalized dihedral groups. Slepian's original construction was based on the premise that group structure allows one to reduce the number of distinct inner pairwise inner products in a frame with n elements from [(n(n-1))/2] to n-1. All of our constructions further utilize the group structure to produce tight frames with even fewer distinct inner product values between the frame elements. When n is prime, for example, we use cyclic groups to construct m-dimensional frame vectors with at most [(n-1)/m] distinct inner products. We use this behavior to bound the coherence of our frames via arguments based on the frame potential, and derive even tighter bounds from combinatorial and algebraic arguments using the group structure alone. In certain cases, we recover well-known Welch bound achieving frames. In cases where the Welch bound has not been achieved, and is not known to be achievable, we obtain frames with close to Welch bound performance.

[1]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[2]  Babak Hassibi,et al.  Frames, group codes, and subgroups of (Z/pZ)× , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[3]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[4]  S. Waldron,et al.  Tight Frames and Their Symmetries , 2004 .

[5]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[6]  Shayne Waldron,et al.  SOME REMARKS ON HEISENBERG FRAMES AND SETS OF EQUIANGULAR LINES , 2007 .

[7]  Andreas Klappenecker,et al.  Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.

[8]  Babak Hassibi,et al.  Frames from groups: Generalized bounds and dihedral groups , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[9]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[10]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[11]  A. Robert Calderbank,et al.  Why Gabor frames? Two fundamental measures of coherence and their role in model selection , 2010, Journal of Communications and Networks.

[12]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[13]  Robert W. Heath,et al.  Linear dispersion codes for MIMO systems based on frame theory , 2002, IEEE Trans. Signal Process..

[14]  Randolph B. Tarrier,et al.  Groups , 1973 .

[15]  Cunsheng Ding,et al.  A Generic Construction of Complex Codebooks Meeting the Welch Bound , 2007, IEEE Transactions on Information Theory.

[16]  Shayne Waldron,et al.  The symmetry group of a finite frame , 2010 .

[17]  Georgios B. Giannakis,et al.  Achieving the Welch bound with difference sets , 2005, IEEE Transactions on Information Theory.

[18]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[19]  Deepti Kalra,et al.  Complex equiangular cyclic frames and erasures , 2006 .

[20]  Valery P. Ipatov On the Karystinos-Pados bounds and optimal binary DS-CDMA signature ensembles , 2004, IEEE Communications Letters.

[21]  Mátyás A. Sustik,et al.  On the existence of equiangular tight frames , 2007 .

[22]  Peter G. Casazza,et al.  Duality Principles in Frame Theory , 2004 .

[23]  Shayne Waldron,et al.  Tight frames generated by finite nonabelian groups , 2008, Numerical Algorithms.

[24]  Babak Hassibi,et al.  On frames from abelian group codes , 2013, 2013 IEEE International Symposium on Information Theory.

[25]  P. Oscar Boykin,et al.  A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.

[26]  David S. Slepian,et al.  Group codes for the Gaussian channel (Abstr.) , 1968, IEEE Trans. Inf. Theory.

[27]  P. Casazza,et al.  Frames of subspaces , 2003, math/0311384.

[28]  Babak Hassibi,et al.  Low-Coherence Frames From Group Fourier Matrices , 2015, IEEE Transactions on Information Theory.

[29]  David C. Chu,et al.  Polyphase codes with good periodic correlation properties (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[30]  Shayne Waldron,et al.  On computing all harmonic frames of n vectors in $\C^d$ , 2006 .

[31]  Dustin G. Mixon,et al.  Steiner equiangular tight frames , 2010, 1009.5730.

[32]  Shayne Waldron,et al.  Group frames , 2012 .

[33]  Cunsheng Ding,et al.  Meeting the Welch and Karystinos-Pados Bounds on DS-CDMA Binary Signature Sets , 2003, Des. Codes Cryptogr..

[34]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.

[35]  Deguang Han,et al.  FRAME REPRESENTATIONS FOR GROUP-LIKE UNITARY OPERATOR SYSTEMS , 2003 .

[36]  A. Robert Calderbank,et al.  Frame coherence and sparse signal processing , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[37]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[38]  Hanfried Lenz,et al.  Design theory , 1985 .

[39]  Peter G. Casazza,et al.  Constructing tight fusion frames , 2011 .

[40]  I. Blake,et al.  Group Codes for the Gaussian Channel , 1975 .

[41]  Jelena Kovačević,et al.  Life Beyond Bases : The Advent of Frames , 2006 .

[42]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.

[43]  Robert W. Heath,et al.  Designing structured tight frames via an alternating projection method , 2005, IEEE Transactions on Information Theory.

[44]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[45]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[46]  Peter G. Casazza,et al.  Finite Frames: Theory and Applications , 2012 .

[47]  Solomon W. Golomb Cyclic Hadamard Difference Sets - Constructions and Applications , 1998, SETA.

[48]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[49]  P G Cazassa,et al.  FRAMES OF SUBSPACES. WAVELETS, FRAMES AND OPERATOR THEORY , 2004 .

[50]  Shayne Waldron,et al.  A classification of the harmonic frames up to unitary equivalence , 2011 .

[51]  Bane V. Vasic,et al.  Combinatorial constructions of low-density parity-check codes for iterative decoding , 2002, IEEE Transactions on Information Theory.

[52]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[53]  Cunsheng Ding,et al.  Complex Codebooks From Combinatorial Designs , 2006, IEEE Transactions on Information Theory.

[54]  Yonina C. Eldar,et al.  Optimal tight frames and quantum measurement , 2002, IEEE Trans. Inf. Theory.

[55]  Robert W. Heath,et al.  Space-time signaling and frame theory , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[57]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[58]  Peter G. Casazza,et al.  Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..

[59]  L. D. Baumert Cyclic Difference Sets , 1971 .

[60]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. J. Scott,et al.  SIC-POVMs: A new computer study , 2009 .

[62]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[63]  A. J. Scott Tight informationally complete quantum measurements , 2006, quant-ph/0604049.

[64]  J. Tropp,et al.  SIGNAL RECOVERY FROM PARTIAL INFORMATION VIA ORTHOGONAL MATCHING PURSUIT , 2005 .

[65]  Mahdad Khatirinejad,et al.  On Weyl-Heisenberg orbits of equiangular lines , 2008 .

[66]  T. Strohmer Approximation of Dual Gabor Frames, Window Decay, and Wireless Communications , 2000, math/0010244.

[67]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[68]  P. Casazza,et al.  Fusion frames and distributed processing , 2006, math/0605374.

[69]  Dimitris A. Pados,et al.  New bounds on the total squared correlation and optimum design of DS-CDMA binary signature sets , 2003, IEEE Trans. Commun..

[70]  John J. Benedetto,et al.  Finite Normalized Tight Frames , 2003, Adv. Comput. Math..

[71]  Babak Hassibi,et al.  Representation theory for high-rate multiple-antenna code design , 2001, IEEE Trans. Inf. Theory.

[72]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[73]  Michael B. Wakin,et al.  Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property , 2009, IEEE Transactions on Information Theory.