Genome Rearrangement with ILP

The <italic>weighted Genome Sorting Problem (wGSP)</italic> is to find a minimum-weight sequence of rearrangement operations that transforms a given gene order into another given gene order using rearrangement operations that are associated with a predefined weight. This paper presents a polynomial sized Integer Linear Program -called <italic> GeRe-ILP</italic>- for solving the wGSP for the following three types of rearrangement operations: <italic>inversion </italic>, <italic>transposition</italic>, and <italic>inverse transposition</italic>. <italic>GeRe-ILP</italic> uses <inline-formula><tex-math notation="LaTeX">$O(n^3)$</tex-math><alternatives> <inline-graphic xlink:href="hartmann-ieq1-2708121.gif"/></alternatives></inline-formula> variables and <inline-formula> <tex-math notation="LaTeX">$O(n^3)$</tex-math><alternatives><inline-graphic xlink:href="hartmann-ieq2-2708121.gif"/> </alternatives></inline-formula> constraints for gene orders of length <inline-formula><tex-math notation="LaTeX">$n$ </tex-math><alternatives><inline-graphic xlink:href="hartmann-ieq3-2708121.gif"/></alternatives></inline-formula>. It is studied experimentally on simulated data how different weighting schemes influence the reconstructed scenarios. The influences of the length of the gene orders and of the size of the reconstructed scenarios on the runtime of <italic> GeRe-ILP</italic> are studied as well.

[1]  Alberto Caprara,et al.  Sorting by reversals is difficult , 1997, RECOMB '97.

[2]  Tao Jiang,et al.  A Further Improved Approximation Algorithm for Breakpoint Graph Decomposition , 2004, J. Comb. Optim..

[3]  Niklas Eriksen,et al.  (1+epsilon)-Approximation of sorting by reversals and transpositions , 2001, Theor. Comput. Sci..

[4]  Shuai Jiang,et al.  Weighted genomic distance can hardly impose a bound on the proportion of transpositions , 2010, RECOMB.

[5]  P. Stadler,et al.  Genetic aspects of mitochondrial genome evolution. , 2013, Molecular phylogenetics and evolution.

[6]  David A. Bader,et al.  A Linear-Time Algorithm for Computing Inversion Distance between Signed Permutations with an Experimental Study , 2001, J. Comput. Biol..

[7]  Mary E. Cosner,et al.  The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families , 1997, Current Genetics.

[8]  Matthias Bernt,et al.  A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. , 2013, Molecular phylogenetics and evolution.

[9]  B. Lang,et al.  Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. , 2005, Systematic biology.

[10]  D. Bryant The Complexity of Calculating Exemplar Distances , 2000 .

[11]  Marek Karpinski,et al.  1.375-Approximation Algorithm for Sorting by Reversals , 2002, ESA.

[12]  Jens Stoye,et al.  A Unifying View of Genome Rearrangements , 2006, WABI.

[13]  Marie-France Sagot,et al.  Sorting by Reversals in Subquadratic Time , 2004, CPM.

[14]  Tzvika Hartman,et al.  A 1.375-Approximation Algorithm for Sorting by Transpositions , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[15]  David Sankoff,et al.  Power Boosts for Cluster Tests , 2005, Comparative Genomics.

[16]  Alberto Caprara,et al.  Fast practical solution of sorting by reversals , 2000, SODA '00.

[17]  Alberto Caprara,et al.  Improved Approximation for Breakpoint Graph Decomposition and Sorting by Reversals , 2002, J. Comb. Optim..

[18]  Guohui Lin,et al.  Signed genome rearrangement by reversals and transpositions: models and approximations , 2001, Theor. Comput. Sci..

[19]  Nadia El-Mabrouk,et al.  Maximizing Synteny Blocks to Identify Ancestral Homologs , 2005, Comparative Genomics.

[20]  Marek Karpinski,et al.  On Some Tighter Inapproximability Results (Extended Abstract) , 1999, ICALP.

[21]  Enno Ohlebusch,et al.  Sorting by Weighted Reversals, Transpositions, and Inverted Transpositions , 2006, RECOMB.

[22]  Zanoni Dias,et al.  Constraint Programming Models for Transposition Distance Problem , 2009, BSB.

[23]  Guillaume Fertin,et al.  How Pseudo-boolean Programming Can Help Genome Rearrangement Distance Computation , 2006, Comparative Genomics.

[24]  朱大铭,et al.  Sorting Unsigned Permutations by Weighted Reversals, Transpositions, and Transreversals , 2010 .

[25]  Giuseppe Lancia,et al.  A Unified Integer Programming Model for Genome Rearrangement Problems , 2015, IWBBIO.

[26]  Vineet Bafna,et al.  Sorting by Transpositions , 1998, SIAM J. Discret. Math..

[27]  Pavel A. Pevzner,et al.  Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, JACM.

[28]  João Meidanis,et al.  Reversal and transposition distance of linear chromosomes , 1998, Proceedings. String Processing and Information Retrieval: A South American Symposium (Cat. No.98EX207).

[29]  Guillaume Fertin,et al.  Sorting by Transpositions Is Difficult , 2010, SIAM J. Discret. Math..

[30]  Romeo Rizzi,et al.  Conserved Interval Distance Computation Between Non-trivial Genomes , 2005, COCOON.

[31]  Matthias Bernt,et al.  On Weighting Schemes for Gene Order Analysis , 2013, GCB.

[32]  J. Boore The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deu , 2000 .

[33]  David Sankoff,et al.  Edit Distances for Genome Comparisons Based on Non-Local Operations , 1992, CPM.

[34]  David Sankoff,et al.  Genome rearrangement with gene families , 1999, Bioinform..

[35]  G. Blin,et al.  The breakpoint distance for signed sequences , 2005 .