Figure-ground discrimination by relative movement in the visual system of the fly

A moving object can be separated from its surround on the basis of motion information alone. It has been known for some time that various species and especially the housefly can discriminate relative motion of an object and its background, even when the two have an identical texture. An earlier paper (Reichardt and Poggio, 1979) has analyzed on the basis of behavioural experiments the main features of the algorithm used by the fly to separate figure from ground. This paper (a) proposes the basic structure of a neuronal circuitry possibly underlying the detection of discontinuities in the optical flow by the visual system of the houseflyMusca; (b) compares detailed predictions of the model circuitry with old and new behavioural experiments onMusca (measuring its attempts to fixate an object), and (c) studies the neuronal realization of the model circuitry in terms of electrophysiological recordings from the lobula plate horizontal cells of the blowflyCalliphora.

[1]  W. Reichardt,et al.  Detection and tracking of moving objects by the fly Musca domestica , 1976, Biological Cybernetics.

[2]  John Thorson,et al.  Small-signal analysis of a visual reflex in the locust , 1966, Kybernetik.

[3]  T. Poggio,et al.  A neuronal circuitry for relative movement discrimination by the visual system of the fly , 1981, Naturwissenschaften.

[4]  M. Srinivasan,et al.  Spatial processing of visual information in the movement-detecting pathway of the fly , 2004, Journal of comparative physiology.

[5]  B. Hassenstein,et al.  Über die Wahrnehmung der Bewegung von Figuren und unregelmässigen Helligkeitsmustern , 1957, Zeitschrift für vergleichende Physiologie.

[6]  Whitman Richards,et al.  Velocity blindness during shearing motion , 1982, Vision Research.

[7]  H. Spekreijse,et al.  Electrophysiological Correlate of Binocular Depth Perception in Man , 1970, Nature.

[8]  K G Götz,et al.  Principles of optomotor reactions in insects. , 1972, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.

[9]  Werner Reichardt,et al.  A theory of the pattern induced flight orientation of the fly Musca domestica II , 1975, Biological Cybernetics.

[10]  W. Reichardt,et al.  Visual control of flight in flies , 1981 .

[11]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[12]  C. Baker,et al.  Does segregation of differently moving areas depend on relative or absolute displacement? , 1982, Vision Research.

[13]  C. Wehrhahn,et al.  Sex-specific differences in the chasing behaviour of houseflies (Musca) , 1979, Biological Cybernetics.

[14]  THOMAS COLLETT,et al.  Visual Neurones for Tracking Moving Targets , 1971, Nature.

[15]  B. Pick,et al.  Visual pattern discrimination as an element of the fly's orientation behaviour , 1976, Biological Cybernetics.

[16]  J Palka,et al.  Discrimination between movements of eye and object by visual interneurones of crickets. , 1969, The Journal of experimental biology.

[17]  Hendrik Eckert,et al.  Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L , 1973, Kybernetik.

[18]  Werner Reichardt,et al.  Optical detection and fixation of objects by fixed flying flies , 1969, Naturwissenschaften.

[19]  John Palka,et al.  Moving Movement Detectors , 1972 .

[20]  Tomaso Poggio,et al.  Tracking and chasing in houseflies (Musca) , 1982, Biological Cybernetics.

[21]  T. Collett,et al.  Vision during flight , 1975 .

[22]  Heinrich Bülthoff,et al.  Figure-ground discrimination in the visual system ofDrosophila melanogaster , 1981, Biological Cybernetics.

[23]  Werner Reichardt,et al.  Visually induced height orientation of the fly Musca domestica , 1975, Biological Cybernetics.

[24]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[25]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[26]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[27]  M. O'Shea,et al.  Protection from habituation by lateral inhibition , 1975, Nature.

[28]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[29]  R. Pierantoni,et al.  A look into the cock-pit of the fly , 1976, Cell and Tissue Research.

[30]  T. Poggio,et al.  Considerations on models of movement detection , 1973, Kybernetik.

[31]  T. Poggio,et al.  Retinal ganglion cells: a functional interpretation of dendritic morphology. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  PoggioTomaso,et al.  Tracking and chasing in houseflies (Musca) , 1982 .

[33]  B. Katz,et al.  Further study of the role of calcium in synaptic transmission , 1970, The Journal of physiology.

[34]  W. Reichardt,et al.  Tracking of moving objects by the flyMusca domestica , 1974, Naturwissenschaften.

[35]  G. D. McCann,et al.  Development and application of white-noise modeling techniques for studies of insect visual nervous system , 1973, Kybernetik.

[36]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[37]  W Reichardt,et al.  Characterization of nonlinear interactions in the fly's visual system , 1981 .

[38]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[39]  G. Horridge The Compound eye and vision of insects , 1975 .

[40]  D. Burr Temporal summation of moving images by the human visual system , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  Giulio Fermi,et al.  Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.

[42]  W Reichardt,et al.  Figure-ground discrimination by the visual system of the fly , 1979 .

[43]  W Reichardt,et al.  The insect eye as a model for analysis of uptake, transduction, and processing of optical data in the nervous system , 1969 .

[44]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[45]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[46]  Werner Reichardt,et al.  Musterinduzierte Flugorientierung , 1973, Naturwissenschaften.

[47]  Klaus Hausen,et al.  Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[48]  H. Wagner Flow-field variables trigger landing in flies , 1982, Nature.

[49]  Werner Reichardt,et al.  A special class of nonlinear interactions in the visual system of the fly , 1976, Biological Cybernetics.

[50]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[51]  W. Reichardt Movement perception in insects , 1969 .

[52]  Hendrik Eckert,et al.  The horizontal cells in the lobula plate of the blowfly,Phaenicia sericata , 1981, Journal of comparative physiology.

[53]  Tomaso Poggio,et al.  A Theory of Human Stereo Vision , 1977 .

[54]  Bernward Pick,et al.  Visual Flicker Induces Orientation Behaviour in the Fly Musca , 1974 .

[55]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[56]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[57]  Christian Wehrhahn,et al.  Fast and slow flight torque responses in flies and their possible role in visual orientation behaviour , 1981, Biological Cybernetics.

[58]  E. Wist,et al.  The spatial frequency effect on perceived velocity , 1976, Vision Research.

[59]  G. D. Mccann,et al.  Optomotor response studies of insect vision , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[60]  B Julesz,et al.  Experiments in the visual perception of texture. , 1975, Scientific American.