Modelling Spatial Recall, Mental Imagery and Neglect

We present a computational model of the neural mechanisms in the parietal and temporal lobes that support spatial navigation, recall of scenes and imagery of the products of recall. Long term representations are stored in the hippocampus, and are associated with local spatial and object-related features in the parahippocampal region. Viewer-centered representations are dynamically generated from long term memory in the parietal part of the model. The model thereby simulates recall and imagery of locations and objects in complex environments. After parietal damage, the model exhibits hemispatial neglect in mental imagery that rotates with the imagined perspective of the observer, as in the famous Milan Square experiment [1]. Our model makes novel predictions for the neural representations in the parahippocampal and parietal regions and for behavior in healthy volunteers and neuropsychological patients.