Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type

We discuss how to characterize long-time dynamics of non-smooth dynamical systems, such as integrate-and-fire (I&F) like neuronal network, using Lyapunov exponents and present a stable numerical method for the accurate evaluation of the spectrum of Lyapunov exponents for this large class of dynamics. These dynamics contain (i) jump conditions as in the firing-reset dynamics and (ii) degeneracy such as in the refractory period in which voltage-like variables of the network collapse to a single constant value. Using the networks of linear I&F neurons, exponential I&F neurons, and I&F neurons with adaptive threshold, we illustrate our method and discuss the rich dynamics of these networks.

[1]  Aaditya V. Rangan,et al.  Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Anthony N. Burkitt,et al.  A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties , 2006, Biological Cybernetics.

[3]  Aaditya V. Rangan,et al.  Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. Shapley,et al.  A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  L. Maler,et al.  Negative Interspike Interval Correlations Increase the Neuronal Capacity for Encoding Time-Dependent Stimuli , 2001, The Journal of Neuroscience.

[6]  L. Maler,et al.  Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors. , 2000, Physical review letters.

[7]  A. Selverston,et al.  Dynamical principles in neuroscience , 2006 .

[8]  P. Müller Calculation of Lyapunov exponents for dynamic systems with discontinuities , 1995 .

[9]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[10]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[11]  K. Ramasubramanian,et al.  A comparative study of computation of Lyapunov spectra with different algorithms , 1999, chao-dyn/9909029.

[12]  D. Hansel,et al.  How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs , 2003, The Journal of Neuroscience.

[13]  R. Brette Mathematical Biology , 2021, Encyclopedia of Evolutionary Psychological Science.

[14]  Maria V. Sanchez-Vives,et al.  Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. , 2003, Journal of neurophysiology.

[15]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[16]  Iberê L. Caldas,et al.  Calculation of Lyapunov exponents in systems with impacts , 2004 .

[17]  Anthony N. Burkitt,et al.  A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input , 2006, Biological Cybernetics.

[18]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[19]  H. Peitgen,et al.  Functional Differential Equations and Approximation of Fixed Points , 1979 .

[20]  J. Yorke,et al.  The liapunov dimension of strange attractors , 1983 .

[21]  Karl Popp,et al.  Dynamics of oscillators with impact and friction , 1997 .

[22]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[23]  K. Pakdaman,et al.  Chaotic firing in the sinusoidally forced leaky integrate-and-fire model with threshold fatigue , 2004 .

[24]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[25]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[26]  C. McBain,et al.  Potassium conductances underlying repolarization and after‐hyperpolarization in rat CA1 hippocampal interneurones. , 1995, The Journal of physiology.

[27]  Tomasz Kapitaniak,et al.  Using Chaos Synchronization to Estimate the Largest Lyapunov Exponent of Nonsmooth Systems , 2000 .

[28]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[29]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[30]  R. Shapley,et al.  An egalitarian network model for the emergence of simple and complex cells in visual cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  André Longtin,et al.  Threshold fatigue and information transfer , 2007, Journal of Computational Neuroscience.

[32]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  André Longtin,et al.  Interspike Interval Correlations, Memory, Adaptation, and Refractoriness in a Leaky Integrate-and-Fire Model with Threshold Fatigue , 2003, Neural Computation.

[34]  H. Kantz A robust method to estimate the maximal Lyapunov exponent of a time series , 1994 .

[35]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[36]  Iberê L. Caldas,et al.  Basins of Attraction and Transient Chaos in a Gear-Rattling Model , 2001 .

[37]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[38]  H. Robinson,et al.  Postsynaptic Variability of Firing in Rat Cortical Neurons: The Roles of Input Synchronization and Synaptic NMDA Receptor Conductance , 2000, The Journal of Neuroscience.

[39]  Nicolas Brunel,et al.  Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. , 2005, Journal of neurophysiology.

[40]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[41]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[42]  David Horn,et al.  Complex dynamics of neuronal thresholds , 2000, Neurocomputing.

[43]  Christiansen,et al.  Nonchaotic transition from quasiperiodicity to complete phase locking. , 1988, Physical review letters.

[44]  Horn,et al.  Neural networks with dynamical thresholds. , 1989, Physical review. A, General physics.

[45]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[46]  Ray P. S. Han,et al.  Chaotic motion of a horizontal impact pair , 1995 .

[47]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[48]  A. Fairhall,et al.  Sensory adaptation , 2007, Current Opinion in Neurobiology.

[49]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[50]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[51]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[52]  Andrzej Stefański,et al.  Estimation of the largest Lyapunov exponent in systems with impacts , 2000 .

[53]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[54]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[55]  A. Longtin,et al.  Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron. , 2005, Journal of theoretical biology.

[56]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  W. Senn,et al.  Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. , 2003, Journal of neurophysiology.

[58]  Aaditya V. Rangan,et al.  Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks , 2007, Journal of Computational Neuroscience.

[59]  André Longtin,et al.  Simple models of bursting and non-bursting P-type electroreceptors , 2001, Neurocomputing.

[60]  J. Movshon,et al.  Spike train encoding by regular-spiking cells of the visual cortex. , 1996, Journal of neurophysiology.

[61]  C. Gray,et al.  Cellular Mechanisms Contributing to Response Variability of Cortical Neurons In Vivo , 1999, The Journal of Neuroscience.

[62]  Tomasz Kapitaniak,et al.  Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization , 2003 .

[63]  Xiao-Jing Wang,et al.  Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron , 2004, Journal of Computational Neuroscience.

[64]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.