Design of particle-reinforced polyurethane mould materials for soft tooling process using evolutionary multi-objective optimization algorithms

Polyurethane is used for making mould in soft tooling (ST) process for producing wax/plastic components. These wax components are later used as pattern in investment casting process. Due to low thermal conductivity of polyurethane, cooling time in ST process is long. To reduce the cooling time, thermal conductive fillers are incorporated into polyurethane to make composite mould material. However, addition of fillers affects various properties of the ST process, such as stiffness of the mould box, rendering flow-ability of melt mould material, etc. In the present work, multi-objective optimization of various conflicting objectives (namely maximization of equivalent thermal conductivity, minimization of effective modulus of elasticity, and minimization of equivalent viscosity) of composite material are conducted using evolutionary algorithms (EAs) in order to design particle-reinforced polyurethane composites by finding the optimal values of design parameters. The design parameters include volume fraction of filler content, size and shape factor of filler particle, etc. The Pareto-optimal front is targeted by solving the corresponding multi-objective problem using the NSGA-II procedure. Then, suitable multi-criterion decision-making techniques are employed to select one or a small set of the optimal solution(s) of design parameter(s) based on the higher level information of the ST process for industrial applications. Finally, the experimental study with a typical real industrial application demonstrates that the obtained optimal design parameters significantly reduce the cooling time in soft tooling process keeping other processing advantages.

[1]  Shengyu Feng,et al.  Thermal conductivity of silicone rubber filled with ZnO , 2007 .

[2]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[3]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[4]  D. Chung,et al.  Thermally conducting aluminum nitride polymer-matrix composites , 2001 .

[5]  Aravind Srinivasan,et al.  Innovization: innovating design principles through optimization , 2006, GECCO.

[6]  Siby Varghese,et al.  Aluminium Powder Filled Nitrile Rubber Composites: Effect of Bonding Agents , 2004 .

[7]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[8]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[9]  D. Sundstrom,et al.  Thermal Conductivity of Reinforced Plastics , 1970 .

[10]  Muhammad Ishaq,et al.  The effect of filler concentration on the electrical, thermal, and mechanical properties of carbon particle and carbon fiber-reinforced poly(styrene-co-acrylonitrile) composites , 2007 .

[11]  Shubhabrata Datta,et al.  Effective properties of particle reinforced polymeric mould material towards reducing cooling time in soft tooling process , 2012 .

[12]  D. Todorović,et al.  Thermal properties , 2022, Physics Subject Headings (PhySH).

[13]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[14]  B. Weidenfeller,et al.  Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene , 2004 .

[15]  Li Wang,et al.  Effective thermal conductivity behavior of filled vulcanized perfluoromethyl vinyl ether rubber , 2008 .

[16]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[17]  Andrzej Rosochowski,et al.  Rapid tooling: the state of the art , 2000 .

[18]  J. Philip,et al.  Thermal properties of polytetrafluoroethylene/Sr2Ce2Ti5O16 polymer/ceramic composites , 2008 .

[19]  Xuehong Lu,et al.  Thermal conductivity of boron nitride‐filled thermoplastics: Effect of filler characteristics and composite processing conditions , 2005 .

[20]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[21]  Y. Agari,et al.  Estimation on thermal conductivities of filled polymers , 1986 .

[22]  Jason M. Keith,et al.  Measuring thermal conductivities of anisotropic synthetic graphite-liquid crystal polymer composites , 2006 .

[23]  H. Ishida,et al.  Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine , 1998 .

[24]  A. Stuart,et al.  Non-Parametric Statistics for the Behavioral Sciences. , 1957 .

[25]  Takeo Ozawa,et al.  Thermal conductivity and heat capacity of ABS resin composites , 1997 .

[26]  Maria Isabel Felisberti,et al.  Thermal conductivity of PET/(LDPE/AI) composites determined by MDSC , 2004 .

[27]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[28]  Ching-Ping Wong,et al.  Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging , 1999 .

[29]  Gao Jun,et al.  Mechanical and rheological properties of HDPE/graphite composite with enhanced thermal conductivity , 2001 .

[30]  Kalyanmoy Deb,et al.  Studies on effective thermal conductivity of particle-reinforced polymeric flexible mould material composites , 2011 .

[31]  Tatsuo Tanaka,et al.  Porosity estimation for random packings of spherical particles , 1984 .

[32]  Laurent Ibos,et al.  Thermophysical properties of polypropylene/aluminum composites , 2004 .

[33]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[34]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[35]  Neri Alves,et al.  Study of the thermomechanical and electrical properties of conducting composites containing natural rubber and carbon black , 2007 .

[36]  Kalyanmoy Deb,et al.  Investigating the Role of Nonmetallic Fillers in Particulate-Reinforced Mold Composites using EAs , 2011 .

[37]  Juhani Orkas,et al.  Studies on Equivalent Viscosity of Particle-Reinforced Flexible Mold Materials Used in Soft Tooling Process , 2010 .

[38]  Roland Keunings,et al.  Prediction of thermo-mechanical properties for compression moulded composites , 1998 .

[39]  Jason M. Keith,et al.  Thermal conductivity models for carbon/liquid crystal polymer composites , 2007 .

[40]  P. Pissis,et al.  Electrical and thermal conductivity of polymers filled with metal powders , 2002 .

[41]  P. Yu A Class of Solutions for Group Decision Problems , 1973 .

[42]  Lawrence E. Nielsen,et al.  Dynamic mechanical properties of particulate‐filled composites , 1970 .

[43]  Arup Kumar Nandi,et al.  TSK-type FLC using a combined LR and GA: Surface roughness prediction in ultraprecision turning , 2006 .

[44]  M. Razzaq,et al.  Thermomechanical studies of aluminum nitride filled shape memory polymer composites , 2007 .

[45]  Richa Agrawal,et al.  Effective thermal conductivity of three‐phase styrene butadiene composites , 2000 .

[46]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[47]  Xiao Hu,et al.  Thermal conductivity of polystyrene–aluminum nitride composite , 2002 .

[48]  Kalyanmoy Deb,et al.  Investigating the role of metallic fillers in particulate reinforced flexible mould material composites using evolutionary algorithms , 2012, Appl. Soft Comput..