Using the proximal gradient and the accelerated proximal gradient as a canonical polyadic tensor decomposition algorithms in difficult situations

Abstract Canonical Polyadic (CP) tensor decomposition is useful in many real-world applications due to its uniqueness, and the ease of interpretation of its factor matrices. This work addresses the problem of calculating the CP decomposition of tensors in difficult cases where the factor matrices in one or all modes are almost collinear – i.e. bottleneck or swamp problems arise. This is done by introducing a constraint on the coherences of the factor matrices that ensures the existence of a best low-rank approximation, which makes it possible to estimate these highly correlated factors. Two new algorithms optimizing the CP decomposition based on proximal methods are proposed. Simulation results are provided and demonstrate the good behaviour of these algorithms, as well as a better compromise between accuracy and convergence speed than other algorithms in the literature.

[1]  Driss Aboutajdine,et al.  CP decomposition approach to blind separation for DS-CDMA system using a new performance index , 2014, EURASIP J. Adv. Signal Process..

[2]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[3]  Pierre Comon,et al.  ROBUST INDEPENDENT COMPONENT ANALYSIS , 2009 .

[4]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[5]  S. Leurgans,et al.  A Decomposition for Three-Way Arrays , 1993, SIAM J. Matrix Anal. Appl..

[6]  E. Lee,et al.  APPLYING GRADIENT PROJECTION AND CONJUGATE GRADIENT TO THE OPTIMUM OPERATION OF RESERVOIRS1 , 1970 .

[7]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[8]  Richard A. Harshman,et al.  Determination and Proof of Minimum Uniqueness Conditions for PARAFAC1 , 1972 .

[9]  P. Paatero Construction and analysis of degenerate PARAFAC models , 2000 .

[10]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[11]  Ben C. Mitchell,et al.  Slowly converging parafac sequences: Swamps and two‐factor degeneracies , 1994 .

[12]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[13]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[15]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[16]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..

[17]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[18]  J. Kruskal,et al.  How 3-MFA data can cause degenerate parafac solutions, among other relationships , 1989 .

[19]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[20]  Caroline Fossati,et al.  Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[21]  W. Rayens,et al.  Two-factor degeneracies and a stabilization of PARAFAC , 1997 .

[22]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[23]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[24]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[25]  Pierre Comon,et al.  Enhanced Line Search: A Novel Method to Accelerate PARAFAC , 2008, SIAM J. Matrix Anal. Appl..

[26]  Na Li,et al.  Some Convergence Results on the Regularized Alternating Least-Squares Method for Tensor Decomposition , 2011, 1109.3831.

[27]  Li Zhang,et al.  Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search , 2006, Numerische Mathematik.

[28]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[29]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[30]  A. Geramita,et al.  Ranks of tensors, secant varieties of Segre varieties and fat points , 2002 .

[31]  A. Stegeman,et al.  On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition , 2007 .

[32]  Jacek Gondzio,et al.  Interior point methods 25 years later , 2012, Eur. J. Oper. Res..

[33]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[34]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[35]  Rasmus Bro,et al.  Improving the speed of multi-way algorithms:: Part I. Tucker3 , 1998 .

[36]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[37]  Pierre Comon,et al.  Blind Multilinear Identification , 2012, IEEE Transactions on Information Theory.

[38]  R. Bro,et al.  Fluorescence spectroscopy and multi-way techniques. PARAFAC , 2013 .

[39]  B. Kowalski,et al.  Tensorial resolution: A direct trilinear decomposition , 1990 .

[40]  Pierre Comon,et al.  Robust Independent Component Analysis by Iterative Maximization of the Kurtosis Contrast With Algebraic Optimal Step Size , 2010, IEEE Transactions on Neural Networks.

[41]  Pierre Comon,et al.  Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.

[42]  Bijan Afsari,et al.  Sensitivity Analysis for the Problem of Matrix Joint Diagonalization , 2008, SIAM J. Matrix Anal. Appl..

[43]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[44]  P. Comon,et al.  Tensor decompositions, alternating least squares and other tales , 2009 .

[45]  Souleymen Sahnoun,et al.  Joint Source Estimation and Localization , 2015, IEEE Transactions on Signal Processing.

[46]  Pierre Comon,et al.  Coherence Constrained Alternating Least Squares , 2018, 2018 26th European Signal Processing Conference (EUSIPCO).

[47]  Rasmus Bro,et al.  Improving the speed of multiway algorithms: Part II: Compression , 1998 .