Controlling the number of HIV infectives in a mobile population.

[1]  K. Wickwire Mathematical models for the control of pests and infectious diseases: a survey. , 1977, Theoretical population biology.

[2]  J. Z. Zhu,et al.  The finite element method , 1977 .

[3]  Klaus Dietz,et al.  On the transmission dynamics of HIV , 1988 .

[4]  Roy M. Anderson,et al.  Possible Demographic Consequences of HIV/AIDS Epidemics: II, Assuming HIV Infection does not Necessarily Lead to AIDS , 1989 .

[5]  Mashe Sniedovich,et al.  Dynamic Programming , 1991 .

[6]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[7]  E. R. Pinch,et al.  Optimal control and the calculus of variations , 1993 .

[8]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[9]  M. Kretzschmar,et al.  Modeling prevention strategies for gonorrhea and Chlamydia using stochastic network simulations. , 1996, American journal of epidemiology.

[10]  S. Yakowitz,et al.  Nonlinear and dynamic programming for epidemic intervention , 1997 .

[11]  D. Kirschner,et al.  Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.

[12]  John Stover,et al.  Simulating the Control of a Heterosexual HIV Epidemic in a Severely Affected East African City , 1998, Interfaces.

[13]  D K Owens,et al.  An Analysis of Optimal Resource Allocation for Prevention of Infection with Human Immunodeficiency Virus (HIV) in Injection Drug Users and Non-Users , 1999, Medical decision making : an international journal of the Society for Medical Decision Making.

[14]  G. Fraser-Andrews,et al.  A Multiple-Shooting Technique for Optimal Control , 1999 .

[15]  S Yakowitz,et al.  A computational method for the study of stochastic epidemics , 2000 .

[16]  Charles J. Mode,et al.  Stochastic Processes in Epidemiology: Hiv/Aids, Other Infectious Diseases and Computers , 2000 .

[17]  Graeme Hugo Indonesia : internal and international population mobility : implications for the spread of HIV/AIDS , 2001 .

[18]  R. Schinazi,et al.  On the role of social clusters in the transmission of infectious diseases. , 2002, Theoretical population biology.

[19]  Suzanne Lenhart,et al.  Optimal control of treatments in a two-strain tuberculosis model , 2002 .

[20]  J. Hyman,et al.  Modeling the impact of random screening and contact tracing in reducing the spread of HIV. , 2003, Mathematical biosciences.

[21]  David Greenhalgh,et al.  Ch. 8. Stochastic processes in epidemic modelling and simulation , 2003 .

[22]  M. Brandeau,et al.  Resource allocation for control of infectious diseases in multiple independent populations: beyond cost-effectiveness analysis. , 2003, Journal of health economics.

[23]  C P Farrington,et al.  Infections with Varying Contact Rates: Application to Varicella , 2004, Biometrics.

[24]  Dirk P. Kroese,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning , 2004 .

[25]  Z. Rosenberg,et al.  Microbicides urgently needed: statement by IPM CEO, Zeda Rosenberg, on new AIDS statistics. Joint United Nations Programme on HIV/AIDS (UNAIDS) releases the 2004 AIDS epidemic update. , 2004 .

[26]  L. Margolin,et al.  On the Convergence of the Cross-Entropy Method , 2005, Ann. Oper. Res..

[27]  Alexei B. Piunovskiy,et al.  An explicit optimal isolation policy for a deterministic epidemic model , 2005, Appl. Math. Comput..

[28]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[29]  Dirk P. Kroese,et al.  The Cross-Entropy Method for Continuous Multi-Extremal Optimization , 2006 .

[30]  Dirk P. Kroese,et al.  Stochastic models for the spread of HIV in a mobile heterosexual population. , 2007 .

[31]  Dirk P. Kroese,et al.  Convergence properties of the cross-entropy method for discrete optimization , 2007, Oper. Res. Lett..

[32]  Numerische,et al.  Enlarging the Domain of Convergence for Multiple Shooting by the Homotopy Method , 2009 .