Integration of Preferences in Decomposition Multiobjective Optimization

Rather than a whole Pareto-optimal front, which demands too many points (especially in a high-dimensional space), the decision maker (DM) may only be interested in a partial region, called the region of interest (ROI). In this case, solutions outside this region can be noisy to the decision-making procedure. Even worse, there is no guarantee that we can find the preferred solutions when tackling problems with complicated properties or many objectives. In this paper, we develop a systematic way to incorporate the DM’s preference information into the decomposition-based evolutionary multiobjective optimization methods. Generally speaking, our basic idea is a nonuniform mapping scheme by which the originally evenly distributed reference points on a canonical simplex can be mapped to new positions close to the aspiration-level vector supplied by the DM. By this means, we are able to steer the search process toward the ROI either directly or interactively and also handle many objectives. Meanwhile, solutions lying on the boundary can be approximated as well given the DM’s requirements. Furthermore, the extent of the ROI is intuitively understandable and controllable in a closed form. Extensive experiments on a variety of benchmark problems with 2 to 10 objectives, fully demonstrate the effectiveness of our proposed method for approximating the preferred solutions in the ROI.

[1]  Xiaodong Li,et al.  Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach , 2008, SEAL.

[2]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[3]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[4]  Kalyanmoy Deb,et al.  A dual-population paradigm for evolutionary multiobjective optimization , 2015, Inf. Sci..

[5]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[6]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[7]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization using an outranking-based dominance generalization , 2010, Comput. Oper. Res..

[8]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[9]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[10]  Tao Zhang,et al.  On the effect of reference point in MOEA/D for multi-objective optimization , 2017, Appl. Soft Comput..

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  Marouane Kessentini,et al.  Preference Incorporation in Evolutionary Multiobjective Optimization , 2015 .

[13]  Thomas L. Saaty,et al.  The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach , 2013, Oper. Res..

[14]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[15]  K. Arrow A Difficulty in the Concept of Social Welfare , 1950, Journal of Political Economy.

[16]  Jürgen Branke,et al.  Learning Value Functions in Interactive Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[17]  Xiaodong Li,et al.  Integrating user preferences with particle swarms for multi-objective optimization , 2008, GECCO '08.

[18]  Eduardo Fernández,et al.  Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: The extended NOSGA method , 2011, Inf. Sci..

[19]  Jinhua Zheng,et al.  Achieving balance between proximity and diversity in multi-objective evolutionary algorithm , 2012, Inf. Sci..

[20]  Fang Liu,et al.  MOEA/D with biased weight adjustment inspired by user preference and its application on multi-objective reservoir flood control problem , 2016, Soft Comput..

[21]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[22]  Cong Zhou,et al.  Objective Reduction Based on the Least Square Method for Large-Dimensional Multi-objective Optimization Problem , 2009, 2009 Fifth International Conference on Natural Computation.

[23]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[24]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[25]  Qingfu Zhang,et al.  Stable Matching-Based Selection in Evolutionary Multiobjective Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[26]  Seyed Taghi Akhavan Niaki,et al.  Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II and NRGA , 2015, Inf. Sci..

[27]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[28]  Peter J. Fleming,et al.  Pareto Front Estimation for Decision Making , 2014, Evolutionary Computation.

[29]  Fang Liu,et al.  MOEA/D with Adaptive Weight Adjustment , 2014, Evolutionary Computation.

[30]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[31]  Heike Trautmann,et al.  Preference Articulation by Means of the R2 Indicator , 2013, EMO.

[32]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[33]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[34]  Murat Köksalan,et al.  An Interactive Territory Defining Evolutionary Algorithm: iTDEA , 2010, IEEE Transactions on Evolutionary Computation.

[35]  Jyrki Wallenius,et al.  Interactive evolutionary multi-objective optimization for quasi-concave preference functions , 2010, Eur. J. Oper. Res..

[36]  Hong Li,et al.  A modification to MOEA/D-DE for multiobjective optimization problems with complicated Pareto sets , 2012, Inf. Sci..

[37]  Kim-Fung Man,et al.  Learning paradigm based on jumping genes: A general framework for enhancing exploration in evolutionary multiobjective optimization , 2013, Inf. Sci..

[38]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[39]  F. Jolai,et al.  A hybrid NSGA-II and VNS for solving a bi-objective no-wait flexible flowshop scheduling problem , 2014, The International Journal of Advanced Manufacturing Technology.

[40]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[41]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[42]  Heike Trautmann,et al.  Integration of Preferences in Hypervolume-Based Multiobjective Evolutionary Algorithms by Means of Desirability Functions , 2010, IEEE Transactions on Evolutionary Computation.

[43]  Yunmei Chen,et al.  Projection Onto A Simplex , 2011, 1101.6081.

[44]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[45]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[46]  Garrison W. Greenwood,et al.  Fitness Functions for Multiple Objective Optimization Problems: Combining Preferences with Pareto Rankings , 1996, FOGA.

[47]  Jinhua Zheng,et al.  Decomposing the user-preference in multiobjective optimization , 2016, Soft Comput..

[48]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[49]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[50]  Sam Kwong,et al.  Multi-objective differential evolution with self-navigation , 2012, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[51]  Roberto Battiti,et al.  Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker , 2010, IEEE Trans. Evol. Comput..

[52]  Mostafa Zandieh,et al.  Bi-objective partial flexible job shop scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches , 2012 .

[53]  Qingfu Zhang,et al.  Efficient Nondomination Level Update Method for Steady-State Evolutionary Multiobjective Optimization , 2017, IEEE Transactions on Cybernetics.

[54]  Kalyanmoy Deb,et al.  Multi-objective evolutionary algorithms: introducing bias among Pareto-optimal solutions , 2003 .

[55]  K. Deb Performance Assessment for Preference-Based Evolutionary Multi-Objective Optimization Using Reference Points , 2016 .

[56]  Dun-Wei Gong,et al.  Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems , 2013, Inf. Sci..

[57]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[58]  Qingfu Zhang,et al.  Interrelationship-Based Selection for Decomposition Multiobjective Optimization , 2015, IEEE Transactions on Cybernetics.

[59]  Marouane Kessentini,et al.  Chapter Four - Preference Incorporation in Evolutionary Multiobjective Optimization: A Survey of the State-of-the-Art , 2015, Adv. Comput..

[60]  Qingfu Zhang,et al.  Adaptive Operator Selection With Bandits for a Multiobjective Evolutionary Algorithm Based on Decomposition , 2014, IEEE Transactions on Evolutionary Computation.

[61]  Qingfu Zhang,et al.  An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition , 2015, IEEE Transactions on Evolutionary Computation.

[62]  Qingfu Zhang,et al.  Matching-Based Selection With Incomplete Lists for Decomposition Multiobjective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[63]  Heike Trautmann,et al.  R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection , 2013, LION.

[64]  Peter J. Fleming,et al.  Preference-inspired co-evolutionary algorithms using weight vectors , 2015, Eur. J. Oper. Res..

[65]  Carlos A. Coello Coello,et al.  A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems , 2010, IEEE Transactions on Evolutionary Computation.

[66]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[67]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[68]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[69]  Bernhard Sendhoff,et al.  Adapting Weighted Aggregation for Multiobjective Evolution Strategies , 2001, EMO.

[70]  Jonathan A. Wright,et al.  Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation , 2015, Appl. Soft Comput..

[71]  Bernhard Sendhoff,et al.  A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[72]  Jie Zhang,et al.  Multiobjective optimization by decomposition with Pareto-adaptive weight vectors , 2011, ICNC.

[73]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[74]  Murat Köksalan,et al.  A Territory Defining Multiobjective Evolutionary Algorithms and Preference Incorporation , 2010, IEEE Transactions on Evolutionary Computation.

[75]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[76]  Lily Rachmawati,et al.  Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[77]  Hassan Qudrat-Ullah,et al.  Improving Dynamic Decision Making through HCI Principles , 2006 .

[78]  Kalyanmoy Deb,et al.  A review of hybrid evolutionary multiple criteria decision making methods , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[79]  Xin Yao,et al.  R-Metric: Evaluating the Performance of Preference-Based Evolutionary Multiobjective Optimization Using Reference Points , 2018, IEEE Transactions on Evolutionary Computation.

[80]  Mostafa Zandieh,et al.  A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic , 2009, Expert Syst. Appl..

[81]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[82]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[83]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[84]  Xiaodong Li,et al.  Integrating user preferences and decomposition methods for many-objective optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[85]  Anne Auger,et al.  Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications , 2012, Theor. Comput. Sci..