Genetic programming approach to the construction of a neural network for control of a walking robot

The authors describe the staged evolution of a complex motor pattern generator (MPG) for the control of a walking robot. The experiments were carried out on a six-legged, Brooks-style insect robot. The MPG was composed of a network of neurons with weights determined by genetic algorithm optimization. Staged evolution was used to improve the convergence rate of the algorithm. First, an oscillator for the individual leg movements was evolved. Then, a network of these oscillators was evolved to coordinate the movements of the different legs. By introducing a staged set of manageable challenges, the algorithm's performance was improved.<<ETX>>