On Time Optimization of Centroidal Momentum Dynamics

Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing ††Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

[1]  Pierre-Brice Wieber,et al.  Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[2]  Quang-Cuong Pham,et al.  When to make a step? Tackling the timing problem in multi-contact locomotion by TOPP-MPC , 2017, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).

[3]  Nicolas Mansard,et al.  Multicontact Locomotion of Legged Robots , 2018, IEEE Transactions on Robotics.

[4]  Eiichi Yoshida,et al.  Model preview control in multi-contact motion-application to a humanoid robot , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  David E. Orin,et al.  Centroidal dynamics of a humanoid robot , 2013, Auton. Robots.

[6]  Zoran Popovic,et al.  Discovery of complex behaviors through contact-invariant optimization , 2012, ACM Trans. Graph..

[7]  Carlos Mastalli,et al.  Simultaneous Contact, Gait, and Motion Planning for Robust Multilegged Locomotion via Mixed-Integer Convex Optimization , 2017, IEEE Robotics and Automation Letters.

[8]  Pierre-Brice Wieber,et al.  Whole body motion controller with long-term balance constraints , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[9]  Russ Tedrake,et al.  Planning robust walking motion on uneven terrain via convex optimization , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[10]  Olivier Stasse,et al.  A versatile and efficient pattern generator for generalized legged locomotion , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[11]  Jonas Buchli,et al.  An efficient optimal planning and control framework for quadrupedal locomotion , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Yuval Tassa,et al.  Synthesis and stabilization of complex behaviors through online trajectory optimization , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Alin Albu-Schäffer,et al.  Three-Dimensional Bipedal Walking Control Based on Divergent Component of Motion , 2015, IEEE Transactions on Robotics.

[14]  Yoshihiko Nakamura,et al.  Stability of surface contacts for humanoid robots: Closed-form formulae of the Contact Wrench Cone for rectangular support areas , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[15]  Russ Tedrake,et al.  Whole-body motion planning with centroidal dynamics and full kinematics , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[16]  Russ Tedrake,et al.  Direct Trajectory Optimization of Rigid Body Dynamical Systems through Contact , 2012, WAFR.

[17]  Robin Deits,et al.  Footstep planning on uneven terrain with mixed-integer convex optimization , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[18]  Alexander Herzog,et al.  Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid , 2014, Autonomous Robots.

[19]  David E. Orin,et al.  Generation of dynamic humanoid behaviors through task-space control with conic optimization , 2013, 2013 IEEE International Conference on Robotics and Automation.

[20]  Alexander Herzog,et al.  A convex model of humanoid momentum dynamics for multi-contact motion generation , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[21]  Pierre-Brice Wieber,et al.  Holonomy and Nonholonomy in the Dynamics of Articulated Motion , 2006 .

[22]  Alexander Herzog,et al.  Trajectory generation for multi-contact momentum control , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[23]  Abderrahmane Kheddar,et al.  Multi-contact walking pattern generation based on model preview control of 3D COM accelerations , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[24]  Alexander Herzog,et al.  Structured contact force optimization for kino-dynamic motion generation , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[25]  Kazuhito Yokoi,et al.  Resolved momentum control: humanoid motion planning based on the linear and angular momentum , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).