An experimental comparison of Bayesian optimization for bipedal locomotion

The design of gaits and corresponding control policies for bipedal walkers is a key challenge in robot locomotion. Even when a viable controller parametrization already exists, finding near-optimal parameters can be daunting. The use of automatic gait optimization methods greatly reduces the need for human expertise and time-consuming design processes. Many different approaches to automatic gait optimization have been suggested to date. However, no extensive comparison among them has yet been performed. In this paper, we present some common methods for automatic gait optimization in bipedal locomotion, and analyze their strengths and weaknesses. We experimentally evaluated these gait optimization methods on a bipedal robot, in more than 1800 experimental evaluations. In particular, we analyzed Bayesian optimization in different configurations, including various acquisition functions.

[1]  Samuel H. Brooks A Discussion of Random Methods for Seeking Maxima , 1958 .

[2]  Harold J. Kushner,et al.  A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .

[3]  Xiaotong Shen,et al.  high-dimensional data analysis , 1991 .

[4]  S. Gatesy,et al.  Bipedal locomotion: effects of speed, size and limb posture in birds and humans , 1991 .

[5]  D. Dennis,et al.  A statistical method for global optimization , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[6]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[7]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[8]  D. Dennis,et al.  SDO : A Statistical Method for Global Optimization , 1997 .

[9]  Gregory Piatetsky-Shapiro,et al.  High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality , 2000 .

[10]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[11]  Manuela M. Veloso,et al.  An evolutionary approach to gait learning for four-legged robots , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[12]  H. Sebastian Seung,et al.  Learning to Walk in 20 Minutes , 2005 .

[13]  Florentin Wörgötter,et al.  Fast Biped Walking with a Sensor-driven Neuronal Controller and Real-time Online Learning , 2006, Int. J. Robotics Res..

[14]  Cord Niehaus,et al.  Gait Optimization on a Humanoid Robot using Particle Swarm Optimization , 2007 .

[15]  Tao Wang,et al.  Automatic Gait Optimization with Gaussian Process Regression , 2007, IJCAI.

[16]  Michael A. Osborne,et al.  Gaussian Processes for Global Optimization , 2008 .

[17]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[18]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[19]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[20]  Howie Choset,et al.  Using response surfaces and expected improvement to optimize snake robot gait parameters , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  D. Lizotte,et al.  An experimental methodology for response surface optimization methods , 2012, J. Glob. Optim..

[22]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[23]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[24]  André Seyfarth,et al.  Robots in human biomechanics—a study on ankle push-off in walking , 2012, Bioinspiration & biomimetics.

[25]  Peter W. Glynn,et al.  Limit Theorems for Simulation-Based Optimization via Random Search , 2013, TOMC.

[26]  Albert Wang,et al.  Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot , 2013, 2013 IEEE International Conference on Robotics and Automation.

[27]  Jan Peters,et al.  Bayesian Gait Optimization for Bipedal Locomotion , 2014, LION.