g-dominance: Reference point based dominance for multiobjective metaheuristics

One of the main tools for including decision maker (DM) preferences in the multiobjective optimization (MO) literature is the use of reference points and achievement scalarizing functions [A.P. Wierzbicki, The use of reference objectives in multiobjective optimization, in: G. Fandel, T. Gal (Eds.), Multiple-Criteria Decision Making Theory and Application, Springer-Verlag, New York, 1980, pp. 469-486.]. The core idea in these approaches is converting the original MO problem into a single-objective optimization problem through the use of a scalarizing function based on a reference point. As a result, a single efficient point adapted to the DM's preferences is obtained. However, a single solution can be less interesting than an approximation of the efficient set around this area, as stated for example by Deb in [K. Deb, J. Sundar, N. Udaya Bhaskara Rao, S. Chaudhuri, Reference point based multiobjective optimization using evolutionary algorithms, International Journal of Computational Intelligence Research, 2(3) (2006) 273-286]. In this paper, we propose a variation of the concept of Pareto dominance, called g-dominance, which is based on the information included in a reference point and designed to be used with any MO evolutionary method or any MO metaheuristic. This concept will let us approximate the efficient set around the area of the most preferred point without using any scalarizing function. On the other hand, we will show how it can be easily used with any MO evolutionary method or any MO metaheuristic (just changing the dominance concept) and, to exemplify its use, we will show some results with some state-of-the-art-methods and some test problems.

[1]  Shigeyoshi Tsutsui,et al.  Advances in Evolutionary Computing , 2003 .

[2]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[3]  Garrison W. Greenwood,et al.  Fitness Functions for Multiple Objective Optimization Problems: Combining Preferences with Pareto Rankings , 1996, FOGA.

[4]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[5]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[6]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[7]  Yaochu Jin,et al.  Knowledge incorporation in evolutionary computation , 2005 .

[8]  Andrzej Jaszkiewicz,et al.  The 'Light Beam Search' approach - an overview of methodology and applications , 1999, Eur. J. Oper. Res..

[9]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[10]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[11]  Edmund K. Burke,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[12]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[13]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[14]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[15]  Kalyanmoy Deb,et al.  Nonlinear goal programming using multi-objective genetic algorithms , 2001, J. Oper. Res. Soc..

[16]  Pekka Korhonen,et al.  A pareto race , 1988 .

[17]  K. Deb Solving goal programming problems using multi-objective genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[18]  João C. N. Clímaco,et al.  An Interactive Method for 0-1 Multiobjective Problems Using Simulated Annealing and Tabu Search , 2000, J. Heuristics.

[19]  Kaisa Miettinen,et al.  Synchronous approach in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[20]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[21]  Christian Fonteix,et al.  Multicriteria optimization and decision engineering of an extrusion process aided by a diploid genetic algorithm , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[22]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[23]  I. C. Parmee,et al.  Genetic algorithm-based multi-objective optimisation and conceptual engineering design , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[24]  Enrico Zio,et al.  A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective optimization problems , 2011, Eur. J. Oper. Res..

[25]  Simon French,et al.  Multiple Criteria Decision Making: Theory and Application , 1981 .

[26]  Kalyanmoy Deb,et al.  Multi-objective evolutionary algorithms: introducing bias among Pareto-optimal solutions , 2003 .

[27]  Andrzej Jaszkiewicz,et al.  Interactive analysis of multiple-criteria project scheduling problems , 1998, Eur. J. Oper. Res..

[28]  Hirotaka Nakayama,et al.  Satisficing Trade-off Method for Multiobjective Programming , 1984 .

[29]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[30]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[31]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[32]  Brahim Rekiek,et al.  Dealing With User's Preferences in Hybrid Assembly Lines Design , 2000 .

[33]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[34]  Jacques Teghem,et al.  Efficiency of interactive multi-objective simulated annealing through a case study , 1998, J. Oper. Res. Soc..

[35]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[36]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO '06.

[37]  Manfred Grauer,et al.  Interactive Decision Analysis , 1984 .

[38]  Carlos A. Coello Coello,et al.  A New Proposal for Multiobjecive Optimization Using Particle Swarm Optimization and Rough Sets Theory , 2006, PPSN.

[39]  Shigeyoshi Tsutsui,et al.  Advances in evolutionary computing: theory and applications , 2003 .

[40]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.