Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models

We propose an evolutionary Monte Carlo algorithm to sample from a target distribution with real-valued parameters. The attractive features of the algorithm include the ability to learn from the samples obtained in previous steps and the ability to improve the mixing of a system by sampling along a temperature ladder. The effectiveness of the algorithm is examined through three multimodal examples and Bayesian neural networks. The numerical results confirm that the real-coded evolutionary algorithm is a promising general approach for simulation and optimization.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[3]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[4]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[6]  M. Postman,et al.  Probes of large-scale structure in the Corona Borealis region. , 1986 .

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[9]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[10]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[11]  K. Roeder Density estimation with confidence sets exemplified by superclusters and voids in the galaxies , 1990 .

[12]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[13]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[14]  D. Mackay,et al.  A Practical Bayesian Framework for Backprop Networks , 1991 .

[15]  Wray L. Buntine,et al.  Bayesian Back-Propagation , 1991, Complex Syst..

[16]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[17]  Suh Young Kang,et al.  An investigation of the use of feedforward neural networks for forecasting , 1992 .

[18]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[19]  J. D. Schaffer,et al.  Real-Coded Genetic Algorithms and Interval-Schemata , 1992, FOGA.

[20]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[21]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[22]  Radford M. Neal Bayesian Learning via Stochastic Dynamics , 1992, NIPS.

[23]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[24]  Walter R. Gilks,et al.  Adaptive Direction Sampling , 1994 .

[25]  G. Roberts,et al.  Convergence of adaptive direction sampling , 1994 .

[26]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[27]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[28]  Walter R. Gilks,et al.  Bayesian model comparison via jump diffusions , 1995 .

[29]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[30]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[31]  Kishan G. Mehrotra,et al.  Elements of artificial neural networks , 1996 .

[32]  Philippe De Wilde Neural Network Models , 1996 .

[33]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[34]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[35]  William Remus,et al.  Neural Network Models for Time Series Forecasts , 1996 .

[36]  W H Wong,et al.  Dynamic weighting in Monte Carlo and optimization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[38]  Isao Ono,et al.  A Real Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distributed Crossover , 1997, ICGA.

[39]  Peter Müller,et al.  Issues in Bayesian Analysis of Neural Network Models , 1998, Neural Computation.

[40]  W. Wong,et al.  Dynamic weighting in simulations of spin systems , 1999 .

[41]  Shigenobu Kobayashi,et al.  A Real-Coded Genetic Algorithm for Function Optimization Using the Unimodal Normal Distribution Crossover , 1999 .

[42]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[43]  W. Michael Conklin,et al.  Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.

[44]  A. Shapiro Monte Carlo Sampling Methods , 2003 .