An Efficient Nondominated Sorting Algorithm for Large Number of Fronts

Nondominated sorting is a key operation used in multiobjective evolutionary algorithms (MOEA). Worst case time complexity of this algorithm is <inline-formula> <tex-math notation="LaTeX">${O(MN^{2})}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">${N}$ </tex-math></inline-formula> is the number of solutions and <inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula> is the number of objectives. For stochastic algorithms like MOEAs, it is important to devise an algorithm which has better average case performance. In this paper, we propose a new algorithm that makes use of faster scalar sorting algorithm to perform nondominated sorting. It finds partial orders of each solution from all objectives and use these orders to skip unnecessary solution comparisons. We also propose a specific order of objectives that reduces objective comparisons. The proposed method introduces a weighted binary search over the fronts when the rank of a solution is determined. It further reduces total computational effort by a large factor when there is large number of fronts. We prove that the worst case complexity can be reduced to <inline-formula> <tex-math notation="LaTeX">${\Theta }({MNC}_{{max}}\mathrm {log}_{{2}} {(F+1)})$ </tex-math></inline-formula>, where the number of fronts is <inline-formula> <tex-math notation="LaTeX">${F}$ </tex-math></inline-formula> and the maximum number of solutions per front is <inline-formula> <tex-math notation="LaTeX">${C}_{\mathrm {max}}$ </tex-math></inline-formula>; however, in general cases, our worst case complexity is still <inline-formula> <tex-math notation="LaTeX">${O(MN^{2})}$ </tex-math></inline-formula>. Our best case time complexity is <inline-formula> <tex-math notation="LaTeX">${O}({MN}\mathrm {log} {N})$ </tex-math></inline-formula>. We also achieve the best case complexity <inline-formula> <tex-math notation="LaTeX">${O}({MN}\mathrm {log} {N+N^{2}})$ </tex-math></inline-formula>, when all solutions are in a single front. This method is compared with other state-of-the-art algorithms—efficient nondomination level update, deductive sort, corner sort, efficient nondominated sort and divide-and-conquer sort—in four different datasets. Experimental results show that our method, namely, bounded best order sort, is computationally more efficient than all other competing algorithms.

[1]  Kazuyuki Murase,et al.  Evolutionary Path Control Strategy for Solving Many-Objective Optimization Problem , 2015, IEEE Transactions on Cybernetics.

[2]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[3]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[4]  Yakov Nekrich A Fast Algorithm for Three-Dimensional Layers of Maxima Problem , 2011, WADS.

[5]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[6]  Ye Tian,et al.  An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[7]  Qian Wang,et al.  An Efficient Non-dominated Sorting Method for Evolutionary Algorithms , 2008, Evolutionary Computation.

[8]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[9]  H. Ishibuchi,et al.  MOGA: multi-objective genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[10]  Yoav Shoham,et al.  Essentials of Game Theory: A Concise Multidisciplinary Introduction , 2008, Essentials of Game Theory: A Concise Multidisciplinary Introduction.

[11]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[12]  Man Leung Wong,et al.  Parallel multi-objective evolutionary algorithms on graphics processing units , 2009, GECCO '09.

[13]  Marc Parizeau,et al.  Generalizing the improved run-time complexity algorithm for non-dominated sorting , 2013, GECCO '13.

[14]  Ye Tian,et al.  A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[15]  Isabelle Bloch,et al.  Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications , 2010, Lecture Notes in Computer Science.

[16]  Robert E. Tarjan,et al.  Biased Search Trees , 1985, SIAM J. Comput..

[17]  Zixing Cai,et al.  A Fast Method of Constructing the Non-dominated Set: Arena's Principle , 2008, 2008 Fourth International Conference on Natural Computation.

[18]  Xin Yao,et al.  Corner Sort for Pareto-Based Many-Objective Optimization , 2014, IEEE Transactions on Cybernetics.

[19]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[20]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[21]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[22]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[23]  Kalyanmoy Deb,et al.  High dimensional model representation for solving expensive multi-objective optimization problems , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[24]  Maxim Buzdalov,et al.  A Provably Asymptotically Fast Version of the Generalized Jensen Algorithm for Non-dominated Sorting , 2014, PPSN.

[25]  Kalyanmoy Deb,et al.  Classifying Metamodeling Methods for Evolutionary Multi-objective Optimization: First Results , 2017, EMO.

[26]  Joshua D. Knowles,et al.  Exploiting the Trade-off - The Benefits of Multiple Objectives in Data Clustering , 2005, EMO.

[27]  Kalyanmoy Deb,et al.  Best Order Sort: A New Algorithm to Non-dominated Sorting for Evolutionary Multi-objective Optimization , 2016, GECCO.

[28]  Mikkel T. Jensen,et al.  Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms , 2003, IEEE Trans. Evol. Comput..

[29]  Majid Sarrafzadeh,et al.  An Optimal Algorithm for the Maximum Three-Chain Problem , 1993, SIAM J. Comput..

[30]  Qingfu Zhang,et al.  Efficient Nondomination Level Update Method for Steady-State Evolutionary Multiobjective Optimization , 2017, IEEE Transactions on Cybernetics.

[31]  Kiyoshi Tanaka,et al.  Computational Cost Reduction of Nondominated Sorting Using the M-Front , 2015, IEEE Transactions on Evolutionary Computation.

[32]  Maxim Buzdalov,et al.  Improved incremental non-dominated sorting for steady-state evolutionary multiobjective optimization , 2017, GECCO.

[33]  Kalyanmoy Deb,et al.  Omni-optimizer: A Procedure for Single and Multi-objective Optimization , 2005, EMO.

[34]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[35]  Jarek Gryz,et al.  Maximal Vector Computation in Large Data Sets , 2005, VLDB.

[36]  Kent McClymont,et al.  Deductive Sort and Climbing Sort: New Methods for Non-Dominated Sorting , 2012, Evolutionary Computation.

[37]  Kalyanmoy Deb,et al.  Metamodeling for multimodal selection functions in evolutionary multi-objective optimization , 2017, GECCO.

[38]  Henrik Blunck,et al.  In-Place Algorithms for Computing (Layers of) Maxima , 2006, SWAT.

[39]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[40]  Ronald L. Rivest,et al.  Introduction to Algorithms, 3rd Edition , 2009 .