Spike timing dependent synaptic plasticity in biological systems

Abstract. Association of a presynaptic spike with a postsynaptic spike can lead to changes in synaptic efficacy that are highly dependent on the relative timing of the pre- and postsynaptic spikes. Different synapses show varying forms of such spike-timing dependent learning rules. This review describes these different rules, the cellular mechanisms that may be responsible for them, and the computational consequences of these rules for information processing and storage in the nervous system.

[1]  S. R. Y. Cajal The Croonian lecture.—La fine structure des centres nerveux , 1894 .

[2]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[3]  J. Albus A Theory of Cerebellar Function , 1971 .

[4]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[5]  T. Sejnowski Statistical constraints on synaptic plasticity. , 1977, Journal of theoretical biology.

[6]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[7]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. , 1980, The Journal of physiology.

[8]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[9]  Masao Ito,et al.  Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells , 1982, The Journal of physiology.

[10]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[11]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  M. Ito Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. , 1982, Annual review of neuroscience.

[13]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[14]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[15]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[16]  B. Kosco Differential Hebbian learning , 1987 .

[17]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[19]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[20]  A. Klopf A neuronal model of classical conditioning , 1988 .

[21]  Y. Prigent [Long term depression]. , 1989, Annales medico-psychologiques.

[22]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Peter Dayan,et al.  Optimal Plasticity from Matrix Memories: What Goes Up Must Come Down , 1990, Neural Computation.

[24]  W. Singer,et al.  Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex , 1990, Nature.

[25]  F. Crépel,et al.  Pairing of pre‐ and postsynaptic activities in cerebellar Purkinje cells induces long‐term changes in synaptic efficacy in vitro. , 1991, The Journal of physiology.

[26]  M. Dickinson,et al.  A long-term depression of AMPA currents in cultured cerebellar purkinje neurons , 1991, Neuron.

[27]  T. Hirano,et al.  Differential pre‐ and postsynaptic mechanisms for synapic potentiation and depression between a granule cell and a purkinje cell in rat cerebellar culture , 1991, Synapse.

[28]  D. Faber,et al.  Long-term potentiation of inhibitory circuits and synapses in the central nervous system. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Y. Dan,et al.  Hebbian depression of isolated neuromuscular synapses in vitro. , 1992, Science.

[30]  A. Konnerth,et al.  Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells , 1992, Nature.

[31]  Y. Komatsu,et al.  Long-term modification of inhibitory synaptic transmission in developing visual cortex. , 1993, Neuroreport.

[32]  E. Knudsen,et al.  Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  D. Linden,et al.  Cellular mechanisms of long-term depression in the cerebellum , 1993, Current Opinion in Neurobiology.

[34]  Masao Ito,et al.  Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells , 1994, Neuroscience Research.

[35]  S. Lisberger Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning. , 1994, Journal of neurophysiology.

[36]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[37]  D. Debanne,et al.  Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[38]  E. Knudsen Supervised learning in the brain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  R. F. Thompson,et al.  Temporal specificity of long-term depression in parallel fiber--Purkinje synapses in rat cerebellar slice. , 1995, Learning & memory.

[40]  R. Tsien,et al.  Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+ transients , 1995, Neuron.

[41]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[42]  Paul Antoine Salin,et al.  Cyclic AMP Mediates a Presynaptic Form of LTP at Cerebellar Parallel Fiber Synapses , 1996, Neuron.

[43]  K. I. Blum,et al.  Functional significance of long-term potentiation for sequence learning and prediction. , 1996, Cerebral cortex.

[44]  J. Houk,et al.  Computational significance of the cellular mechanisms for synaptic plasticity in Purkinje cells , 1996 .

[45]  D. Alkon,et al.  Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice. , 1996, Journal of neurophysiology.

[46]  V. Han,et al.  Synaptic plasticity in a cerebellum-like structure depends on temporal order , 1997, Nature.

[47]  C. Bell,et al.  The generation and subtraction of sensory expectations within cerebellum-like structures. , 1997, Brain, behavior and evolution.

[48]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[49]  R. Nicoll,et al.  Two Distinct Forms of Long-Term Depression Coexist in CA1 Hippocampal Pyramidal Cells , 1997, Neuron.

[50]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[52]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[53]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[54]  R. Kempter,et al.  Hebbian learning and spiking neurons , 1999 .

[55]  Catherine E. Carr,et al.  Evolution of Time Coding Systems , 1999, Neural Computation.

[56]  O. Paulsen,et al.  Rapid report: postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. , 1999, The Journal of physiology.

[57]  Kenji Doya,et al.  What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? , 1999, Neural Networks.

[58]  G. Bi,et al.  Distributed synaptic modification in neural networks induced by patterned stimulation , 1999, Nature.

[59]  M. Constantine-Paton,et al.  The role of neural activity in synaptic development and its implications for adult brain function. , 1999, Advances in neurology.

[60]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[61]  Xiaohui Xie,et al.  Spike-based Learning Rules and Stabilization of Persistent Neural Activity , 1999, NIPS.

[62]  Rajesh P. N. Rao,et al.  Predictive Sequence Learning in Recurrent Neocortical Circuits , 1999, NIPS.

[63]  Yoshiki Kashimori,et al.  A role of synaptic variation depending on precise timings of pre- and postsynaptic depolarization in suppression of disturbance due to tail bending for accurate electrolocation , 2000, Neurocomputing.

[64]  Mark C. W. van Rossum,et al.  Stable Hebbian Learning from Spike Timing-Dependent Plasticity , 2000, The Journal of Neuroscience.

[65]  V. Han,et al.  Reversible Associative Depression and Nonassociative Potentiation at a Parallel Fiber Synapse , 2000, Neuron.

[66]  M. Kano,et al.  Local Calcium Release in Dendritic Spines Required for Long-Term Synaptic Depression , 2000, Neuron.

[67]  R. Huganir,et al.  Cerebellar Long-Term Depression Requires PKC-Regulated Interactions between GluR2/3 and PDZ Domain–Containing Proteins , 2000, Neuron.

[68]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[69]  S. Wang,et al.  Coincidence detection in single dendritic spines mediated by calcium release , 2000, Nature Neuroscience.

[70]  Daniel D. Lee,et al.  Stability of the Memory of Eye Position in a Recurrent Network of Conductance-Based Model Neurons , 2000, Neuron.

[71]  M. Poo,et al.  Calcium stores regulate the polarity and input specificity of synaptic modification , 2000, Nature.

[72]  M. Ito,et al.  Cerebellar long-term depression: characterization, signal transduction, and functional roles. , 2001, Physiological reviews.

[73]  Daniel D. Lee,et al.  Equilibrium properties of temporally asymmetric Hebbian plasticity. , 2000, Physical review letters.

[74]  Rajesh P. N. Rao,et al.  Spike-Timing-Dependent Hebbian Plasticity as Temporal Difference Learning , 2001, Neural Computation.

[75]  P. J. Sjöström,et al.  Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity , 2001, Neuron.

[76]  R. Kempter,et al.  Formation of temporal-feature maps by axonal propagation of synaptic learning , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[77]  C. Holmgren,et al.  Coincident Spiking Activity Induces Long-Term Changes in Inhibition of Neocortical Pyramidal Cells , 2001, The Journal of Neuroscience.

[78]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[79]  Wulfram Gerstner,et al.  Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns , 1993, Biological Cybernetics.

[80]  Patrick D. Roberts,et al.  Computational Consequences of Temporally Asymmetric Learning Rules: I. Differential Hebbian Learning , 1999, Journal of Computational Neuroscience.

[81]  Patrick D. Roberts,et al.  Computational Consequences of Temporally Asymmetric Learning Rules: II. Sensory Image Cancellation , 2000, Journal of Computational Neuroscience.

[82]  T. Lømo,et al.  Potentiation of monosynaptic EPSPs in the perforant path-dentate granule cell synapse , 2004, Experimental Brain Research.