Efficient covariance matrix update for variable metric evolution strategies

Randomized direct search algorithms for continuous domains, such as evolution strategies, are basic tools in machine learning. They are especially needed when the gradient of an objective function (e.g., loss, energy, or reward function) cannot be computed or estimated efficiently. Application areas include supervised and reinforcement learning as well as model selection. These randomized search strategies often rely on normally distributed additive variations of candidate solutions. In order to efficiently search in non-separable and ill-conditioned landscapes the covariance matrix of the normal distribution must be adapted, amounting to a variable metric method. Consequently, covariance matrix adaptation (CMA) is considered state-of-the-art in evolution strategies. In order to sample the normal distribution, the adapted covariance matrix needs to be decomposed, requiring in general Θ(n3) operations, where n is the search space dimension. We propose a new update mechanism which can replace a rank-one covariance matrix update and the computationally expensive decomposition of the covariance matrix. The newly developed update rule reduces the computational complexity of the rank-one covariance matrix adaptation to Θ(n2) without resorting to outdated distributions. We derive new versions of the elitist covariance matrix adaptation evolution strategy (CMA-ES) and the multi-objective CMA-ES. These algorithms are equivalent to the original procedures except that the update step for the variable metric distribution scales better in the problem dimension. We also introduce a simplified variant of the non-elitist CMA-ES with the incremental covariance matrix update and investigate its performance. Apart from the reduced time-complexity of the distribution update, the algebraic computations involved in all new algorithms are simpler compared to the original versions. The new update rule improves the performance of the CMA-ES for large scale machine learning problems in which the objective function can be evaluated fast.

[1]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[2]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[3]  Christian Igel,et al.  Evolutionary Adaptation of Nonlinear Dynamical Systems in Computational Neuroscience , 2004, Genetic Programming and Evolvable Machines.

[4]  Christian Igel,et al.  Evolutionary tuning of multiple SVM parameters , 2005, ESANN.

[5]  James N. Knight,et al.  Reducing the space-time complexity of the CMA-ES , 2007, GECCO '07.

[6]  Ingo Mierswa Controlling overfitting with multi-objective support vector machines , 2007, GECCO '07.

[7]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[8]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[9]  Nicola Beume,et al.  Scalarization versus indicator-based selection in multi-objective CMA evolution strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[10]  Christian Igel,et al.  Multi-Objective Optimization of Support Vector Machines , 2006, Multi-Objective Machine Learning.

[11]  Christian Igel,et al.  Steady-State Selection and Efficient Covariance Matrix Update in the Multi-objective CMA-ES , 2007, EMO.

[12]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[13]  Richard S. Sutton,et al.  Reinforcement Learning , 1992, Handbook of Machine Learning.

[14]  Larry J. Eshelman,et al.  Proceedings of the 6th International Conference on Genetic Algorithms , 1995 .

[15]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[16]  H. Beyer,et al.  Noisy Local Optimization with Evolution Strategies , 2002 .

[17]  Victor Klee Can the Measure of be Computed in Less than O(n log n) Steps , 1977 .

[18]  A. Auger Convergence results for the ( 1 , )-SA-ES using the theory of-irreducible Markov chains , 2005 .

[19]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[20]  Gerald Sommer,et al.  Evolutionary reinforcement learning of artificial neural networks , 2007, Int. J. Hybrid Intell. Syst..

[21]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[22]  Anne Auger,et al.  Performance evaluation of an advanced local search evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[23]  Christian Igel,et al.  Similarities and differences between policy gradient methods and evolution strategies , 2008, ESANN.

[24]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[25]  Gerald Sommer,et al.  Efficient reinforcement learning through Evolutionary Acquisition of Neural Topologies , 2005, ESANN.

[26]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[27]  G. Unter Rudolph On Correlated Mutations in Evolution Strategies , 1992 .

[28]  V. Klee Can the Measure of ∪ n 1 [ a i , b i ] be Computed in Less Than O(n logn) Steps? , 1977 .

[29]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[30]  Edmund K. Burke,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[31]  Christian Igel,et al.  Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem , 2008, EWRL.

[32]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[33]  Petros Koumoutsakos,et al.  A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.

[34]  Victor Klee Impressions of Mathematical Education in the People's Republic of China , 1977 .

[35]  Christian Igel,et al.  Optimization of dynamic neural fields , 2001, Neurocomputing.

[36]  Kirsten Schmieder,et al.  Registration of CT and Intraoperative 3-D Ultrasound Images of the Spine Using Evolutionary and Gradient-Based Methods , 2008, IEEE Transactions on Evolutionary Computation.

[37]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[38]  Andreas Zell,et al.  Main vector adaptation: a CMA variant with linear time and space complexity , 2001 .

[39]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[40]  Christian Igel,et al.  Multi-objective Model Selection for Support Vector Machines , 2005, EMO.

[41]  Yaochu Jin,et al.  Multi-Objective Machine Learning , 2006, Studies in Computational Intelligence.

[42]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[43]  Anne Auger,et al.  Convergence results for the (1, lambda)-SA-ES using the theory of phi-irreducible Markov chains , 2005, Theor. Comput. Sci..

[44]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[45]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[46]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[47]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[48]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[49]  Simon M. Lucas,et al.  Parallel Problem Solving from Nature - PPSN X, 10th International Conference Dortmund, Germany, September 13-17, 2008, Proceedings , 2008, PPSN.

[50]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[51]  Thomas Philip Runarsson,et al.  Asynchronous Parallel Evolutionary Model Selection for Support Vector Machines , 2004 .

[52]  Christian Igel,et al.  Uncertainty Handling in Model Selection for Support Vector Machines , 2008, PPSN.

[53]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[54]  K. Steiglitz,et al.  Adaptive step size random search , 1968 .

[55]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[56]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[57]  Dirk V. Arnold,et al.  Weighted multirecombination evolution strategies , 2006, Theor. Comput. Sci..

[58]  Jens Jägersküpper Lower Bounds for Hit-and-Run Direct Search , 2007, SAGA.

[59]  Andreas Ostermeier,et al.  An Evolution Strategy with Momentum Adaptation of the Random Number Distribution , 1992, PPSN.

[60]  Gregor Schöner,et al.  Making Driver Modeling Attractive , 2005, IEEE Intell. Syst..

[61]  Martin Mandischer A comparison of evolution strategies and backpropagation for neural network training , 2002, Neurocomputing.

[62]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[63]  Pavel Brazdil,et al.  Proceedings of the European Conference on Machine Learning , 1993 .

[64]  Nikolaus Hansen,et al.  On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.

[65]  Dirk V. Arnold,et al.  Noisy Optimization With Evolution Strategies , 2002, Genetic Algorithms and Evolutionary Computation.

[66]  Marc Toussaint,et al.  On Classes of Functions for which No Free Lunch Results Hold , 2001, Inf. Process. Lett..

[67]  Pedro Larrañaga,et al.  Towards a New Evolutionary Computation - Advances in the Estimation of Distribution Algorithms , 2006, Towards a New Evolutionary Computation.

[68]  Nikolaus Hansen,et al.  Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrategie - eine Untersuchung zur entstochastisierten, koordinatensystemunabhängigen Adaptation der Mutationsverteilung , 1998 .

[69]  Christian Igel,et al.  Evolution Strategies for Direct Policy Search , 2008, PPSN.

[70]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[71]  Ingo Mierswa,et al.  Evolutionary learning with kernels: a generic solution for large margin problems , 2006, GECCO '06.

[72]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[73]  Jens Jägersküpper,et al.  How the (1+1) ES using isotropic mutations minimizes positive definite quadratic forms , 2006, Theor. Comput. Sci..

[74]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[75]  Peter A. N. Bosman,et al.  Proceedings of the Genetic and Evolutionary Computation Conference - GECCO - 2006 , 2006 .

[76]  Risto Miikkulainen,et al.  Efficient Non-linear Control Through Neuroevolution , 2006, ECML.

[77]  Petros Koumoutsakos,et al.  Learning probability distributions in continuous evolutionary algorithms – a comparative review , 2004, Natural Computing.

[78]  Xiaodong Li,et al.  Solving Rotated Multi-objective Optimization Problems Using Differential Evolution , 2004, Australian Conference on Artificial Intelligence.

[79]  Mark H. Overmars,et al.  New upper bounds in Klee's measure problem , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[80]  Nikolaus Hansen,et al.  Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrategie , 1998 .

[81]  Hans-Georg Beyer,et al.  A Comparison of Evolution Strategies with Other Direct Search Methods in the Presence of Noise , 2003, Comput. Optim. Appl..

[82]  Jens Jägersküpper,et al.  Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods General Lower Bounds for Randomized Direct Search with Isotropic Sampling , 2008 .

[83]  L. Darrell Whitley,et al.  Comparing the Niches of CMA-ES, CHC and Pattern Search Using Diverse Benchmarks , 2006, PPSN.

[84]  Christian Igel,et al.  Evolutionary Optimization of Sequence Kernels for Detection of Bacterial Gene Starts , 2006, ICANN.

[85]  Christian Igel,et al.  A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies , 2006, GECCO.

[86]  Raymond Ros,et al.  A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity , 2008, PPSN.

[87]  Christian Igel,et al.  Neuroevolution for reinforcement learning using evolution strategies , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[88]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.