Complex Independent Component Analysis of Frequency-Domain Electroencephalographic Data

Independent component analysis (ICA) has proven useful for modeling brain and electroencephalographic (EEG) data. Here, we present a new, generalized method to better capture the dynamics of brain signals than previous ICA algorithms. We regard EEG sources as eliciting spatio-temporal activity patterns, corresponding to, e.g. trajectories of activation propagating across cortex. This leads to a model of convolutive signal superposition, in contrast with the commonly used instantaneous mixing model. In the frequency-domain, convolutive mixing is equivalent to multiplicative mixing of complex signal sources within distinct spectral bands. We decompose the recorded spectral-domain signals into independent components by a complex infomax ICA algorithm. First results from a visual attention EEG experiment exhibit: (1). sources of spatio-temporal dynamics in the data, (2). links to subject behavior, (3). sources with a limited spectral extent, and (4). a higher degree of independence compared to sources derived by standard ICA.

[1]  E. Courchesne,et al.  Stimulus novelty, task relevance and the visual evoked potential in man. , 1975, Electroencephalography and clinical neurophysiology.

[2]  Peter Bloomfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977 .

[3]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[4]  A. Izenman,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man and Cybernetics.

[5]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[6]  R. Jindra Mass action in the nervous system W. J. Freeman, Academic Press, New York (1975), 489 pp., (hard covers). $34.50 , 1976, Neuroscience.

[7]  S Makeig,et al.  Functionally independent components of early event-related potentials in a visual spatial attention task. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[9]  Kari Torkkola,et al.  BLIND SIGNAL SEPARATION IN COMMUNICATIONS: MAKING USE OF KN OWN SIGNAL DISTRIBUTIONS , 1998 .

[10]  P. Somogyi,et al.  Architectonics of the cerebral cortex M. A. B. Brazier &H. Petsche (Eds). Raven Press, New York (1978). 486 pp., $45.00 , 1978, Neuroscience.

[11]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[12]  Koby Crammer,et al.  Advances in Neural Information Processing Systems 14 , 2002 .

[13]  S. Makeig,et al.  Lapses in alertness: coherence of fluctuations in performance and EEG spectrum. , 1993, Electroencephalography and clinical neurophysiology.

[14]  中田 力 Integrated human brain science : theory, method, application (music) , 2000 .

[15]  C. Rosenberg,et al.  Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 3rd Ed. , 1994 .

[16]  Neil D. Lawrence,et al.  Advances in Neural Information Processing Systems 14 , 2002 .

[17]  Motorola,et al.  BLIND SIGNAL SEPARATION IN COMMUNICATIONS : MAKING USE OF KNOWN SIGNAL DISTRIBUTIONS , 1998 .

[18]  T. Sejnowski,et al.  Functionally Independent Components of the Late Positive Event-Related Potential during Visual Spatial Attention , 1999, The Journal of Neuroscience.

[19]  Barak A. Pearlmutter,et al.  Blind Source Separation via Multinode Sparse Representation , 2001, NIPS.

[20]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[21]  Birger Kollmeier,et al.  Adaptive separation of acoustic sources for anechoic conditions: A constrained frequency domain approach , 2003, Speech Commun..

[22]  P. König,et al.  Top-down processing mediated by interareal synchronization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Tzyy-Ping Jung,et al.  Independent Component Analysis of Electroencephalographic Data , 1995, NIPS.

[24]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[25]  Jörn Anemüller,et al.  Across-frequency processing in convolutive blind source separation , 2001 .

[26]  M. Brazier,et al.  Architectonics of the cerebral cortex , 1978 .

[27]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[28]  Thomas G. Dietterich,et al.  Editors. Advances in Neural Information Processing Systems , 2002 .

[29]  Rodney Cotterill,et al.  Moving ICA and Time-Frequency Analysis in Event-Related EEG Studies of Selective Attention December 1999 , 1999 .

[30]  Marissa Westerfield,et al.  INDEPENDENT COMPONENT ANALYSIS OF SINGLE-TRIAL EVENT-RELATED POTENTIALS , 1999 .

[31]  C. L. Nikias,et al.  Higher-order spectra analysis : a nonlinear signal processing framework , 1993 .

[32]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.