Regulation of persistent activity by background inhibition in an in vitro model of a cortical microcircuit.

We combined in vitro intracellular recording from prefrontal cortical neurons with simulated synaptic activity of a layer 5 prefrontal microcircuit using a dynamic clamp. During simulated in vivo background conditions, the cell responded to a brief depolarization with a sequence of spikes that outlasted the depolarization, mimicking the activity of a cell recorded during the delay period of a working memory task in the behaving monkey. The onset of sustained activity depended on the number of action potentials elicited by the cue-like depolarization. Too few spikes failed to provide enough NMDA drive to elicit sustained reverberations; too many spikes activated a slow intrinsic hyperpolarization current that prevented spiking; an intermediate number of spikes produced sustained activity. When high dopamine levels were simulated by depolarizing the cell and by increasing the amount of NMDA current, the cell exhibited spontaneous 'up-states' that terminated by the activation of a slow intrinsic hyperpolarizing current. The firing rate during the delay period could be effectively modulated by the standard deviation of the inhibitory background synaptic noise without significant changes in the background firing rate before cue onset. These results suggest that the balance between fast feedback inhibition and slower AMPA and NMDA feedback excitation is critical in initiating persistent activity and that the maintenance of persistent activity may be regulated by the amount of correlated background inhibition.

[1]  CR Yang,et al.  Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  R. Romo,et al.  Neuronal correlates of parametric working memory in the prefrontal cortex , 1999, Nature.

[3]  M. V. Rossum,et al.  Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses , 2000, Neuron.

[4]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[5]  U. Stäubli,et al.  Recognition Memory Correlates of Hippocampal Theta Cells , 2001, The Journal of Neuroscience.

[6]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[7]  A. Fuchs,et al.  Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. , 1992, Journal of neurophysiology.

[8]  D. Durstewitz,et al.  Bidirectional Dopamine Modulation of GABAergic Inhibition in Prefrontal Cortical Pyramidal Neurons , 2001, The Journal of Neuroscience.

[9]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[10]  H. Seung,et al.  In vivo intracellular recording and perturbation of persistent activity in a neural integrator , 2001, Nature Neuroscience.

[11]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions , 1996, The Journal of comparative neurology.

[12]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[13]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[14]  C. Gross,et al.  Functional differentiation along the anterior-posterior axis of the hippocampus in monkeys. , 1998, Journal of neurophysiology.

[15]  D. McCormick,et al.  Turning on and off recurrent balanced cortical activity , 2003, Nature.

[16]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[17]  Xiao-Jing Wang Synaptic reverberation underlying mnemonic persistent activity , 2001, Trends in Neurosciences.

[18]  B. Bunney,et al.  Characterization of dopamine‐induced depolarization of prefrontal cortical neurons , 1997, Synapse.

[19]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[20]  P. Mazur On the theory of brownian motion , 1959 .

[21]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[22]  T. Sejnowski,et al.  Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons , 2001, Neuroscience.

[23]  D. Henze,et al.  Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. , 2000, Journal of neurophysiology.

[24]  J. Seamans,et al.  Synaptic basis of persistent activity in prefrontal cortex in vivo and in organotypic cultures. , 2003, Cerebral cortex.

[25]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[26]  B. McNaughton,et al.  Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. , 1998, Cerebral cortex.

[27]  P. Goldman-Rakic,et al.  Prefrontal Microcircuits: Membrane Properties and Excitatory Input of Local, Medium, and Wide Arbor Interneurons , 2001, The Journal of Neuroscience.

[28]  J M Fuster,et al.  Behavioral electrophysiology of the prefrontal cortex of the primate. , 1990, Progress in brain research.

[29]  M S Graziano,et al.  Coding the locations of objects in the dark. , 1997, Science.

[30]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[31]  C. Cepeda,et al.  Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  CE Jahr,et al.  A quantitative description of NMDA receptor-channel kinetic behavior , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  J M Bower,et al.  Synaptic Control of Spiking in Cerebellar Purkinje Cells: Dynamic Current Clamp Based on Model Conductances , 1999, The Journal of Neuroscience.

[34]  S. Mizumori,et al.  Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential rewards in a spatial memory task , 2001, Behavioural Brain Research.

[35]  L. Abbott,et al.  Redundancy Reduction and Sustained Firing with Stochastic Depressing Synapses , 2002, The Journal of Neuroscience.

[36]  C F Stevens,et al.  Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  U. Stäubli,et al.  Short‐term reverberant memory model of hippocampal field CA3 , 1997, Hippocampus.

[39]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics , 1996, The Journal of comparative neurology.

[40]  Paul Leonard Gabbott,et al.  Local‐circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: Morphology and quantitative distribution , 1997, The Journal of comparative neurology.

[41]  P. Goldman-Rakic,et al.  A role for inhibition in shaping the temporal flow of information in prefrontal cortex , 2002, Nature Neuroscience.

[42]  J. Fuster,et al.  From perception to action: temporal integrative functions of prefrontal and parietal neurons. , 1999, Cerebral cortex.

[43]  Christos Constantinidis,et al.  The sensory nature of mnemonic representation in the primate prefrontal cortex , 2001, Nature Neuroscience.

[44]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[45]  Xiangmin Xu,et al.  Static and dynamic views of visual cortical organization. , 2002, Progress in brain research.

[46]  Antonio R. Damasio,et al.  The Prefrontal Cortex: Its Structure, Function and Pathology , 1992 .

[47]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[48]  R. Yuste,et al.  Dynamics of Spontaneous Activity in Neocortical Slices , 2001, Neuron.

[49]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[50]  D. Lewis,et al.  Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. , 2000, Cerebral cortex.

[51]  M. L. Pucak,et al.  Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex , 1998, The Journal of comparative neurology.

[52]  B. Lewis,et al.  Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential 'up' states in pyramidal neurons via D(1) dopamine receptors. , 2000, Cerebral cortex.

[53]  William R. Softky,et al.  Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. , 1996, Journal of neurophysiology.

[54]  T. Sejnowski,et al.  Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Abeles,et al.  Detecting precise firing sequences in experimental data , 2001, Journal of Neuroscience Methods.

[56]  S. Hughes,et al.  Dynamic clamp study of Ih modulation of burst firing and δ oscillations in thalamocortical neurons in vitro , 1998, Neuroscience.

[57]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[58]  E. Marder,et al.  Dynamic clamp: computer-generated conductances in real neurons. , 1993, Journal of neurophysiology.

[59]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[60]  B. Bunney,et al.  Opposite modulation of cortical N-methyl-d-aspartate receptor-mediated responses by low and high concentrations of dopamine , 1999, Neuroscience.

[61]  T. Sejnowski,et al.  Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity , 2003, Neuroscience.