On the Mean Convergence Time of Evolutionary Algorithms without Selection and Mutation

In this paper we study random genetic drift in a finite genetic population. Exact formulae for calculating the mean convergence time of the population are analytically derived and some results of numerical calculations are given. The calculations are compared to the results obtained in population genetics. A new proposition is derived for binary alleles and uniform crossover. Here the mean convergence time τ is almost proportional to the size of the population and to the logarithm of the number of the loci. The results of Monte Carlo type numerical simulations are in agreement with the results from the calculation.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[3]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[4]  R. A. Fisher,et al.  On the dominance ratio , 1990 .

[5]  M. Kimura The Neutral Theory of Molecular Evolution: Introduction , 1983 .

[6]  M. Kimura Difiusion models in population genetics , 1964 .

[7]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[8]  Rory A. Fisher,et al.  XXI.—On the Dominance Ratio , 1923 .

[9]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[10]  S. Wright,et al.  Evolution in Mendelian Populations. , 1931, Genetics.

[11]  James F. Crow,et al.  An introduction to population genetics. , 1950 .

[12]  D. Hartl,et al.  A primer of population genetics , 1981 .

[13]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[14]  Heinz Mühlenbein,et al.  The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA) , 1993, Evolutionary Computation.

[15]  Motoo Kimura,et al.  Diffusion models in population genetics , 1964, Journal of Applied Probability.

[16]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[17]  J. Kingman A FIRST COURSE IN STOCHASTIC PROCESSES , 1967 .

[18]  H. M. Uhlenbein Evolutionary Algorithms: Theory and Applications , 1993 .