A reliable ensemble based approach to semi-supervised learning

[1]  Thomas G. Dietterich,et al.  Improved Class Probability Estimates from Decision Tree Models , 2003 .

[2]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[3]  Ludmila I. Kuncheva Diversity in multiple classifier systems , 2005, Inf. Fusion.

[4]  Ioannis E. Livieris A New Ensemble Self-labeled Semi-supervised Algorithm , 2019, Informatica.

[5]  Nizar Grira,et al.  Unsupervised and Semi-supervised Clustering : a Brief Survey ∗ , 2004 .

[6]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[7]  David H. Wolpert,et al.  An Efficient Method To Estimate Bagging's Generalization Error , 1999, Machine Learning.

[8]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[9]  Michelangelo Ceci,et al.  Semi-supervised classification trees , 2017, Journal of Intelligent Information Systems.

[10]  Harry Zhang,et al.  An Extensive Empirical Study on Semi-supervised Learning , 2010, 2010 IEEE International Conference on Data Mining.

[11]  Bin Wang,et al.  Semi-supervised Self-training for Sentence Subjectivity Classification , 2008, Canadian Conference on AI.

[12]  Nong Sang,et al.  Using clustering analysis to improve semi-supervised classification , 2013, Neurocomputing.

[13]  Núria Macià,et al.  Towards UCI+: A mindful repository design , 2014, Inf. Sci..

[14]  Xiaojin Zhu,et al.  Introduction to Semi-Supervised Learning , 2009, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[15]  David Yarowsky,et al.  Unsupervised Word Sense Disambiguation Rivaling Supervised Methods , 1995, ACL.

[16]  Robert D. Nowak,et al.  Unlabeled data: Now it helps, now it doesn't , 2008, NIPS.

[17]  Jesús Alcalá-Fdez,et al.  KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework , 2011, J. Multiple Valued Log. Soft Comput..

[18]  Yide Wang,et al.  Progressive Semisupervised Learning of Multiple Classifiers , 2018, IEEE Transactions on Cybernetics.

[19]  Paulo Cortez,et al.  Modeling wine preferences by data mining from physicochemical properties , 2009, Decis. Support Syst..

[20]  Georgios Kostopoulos,et al.  Semi-supervised regression: A recent review , 2018, J. Intell. Fuzzy Syst..

[21]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[22]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[23]  Zhi-Hua Zhou,et al.  Tri-training: exploiting unlabeled data using three classifiers , 2005, IEEE Transactions on Knowledge and Data Engineering.

[24]  J. Friedman Stochastic gradient boosting , 2002 .

[25]  Zhi-Hua Zhou When semi-supervised learning meets ensemble learning , 2011 .

[26]  Horst Bischof,et al.  Semi-Supervised Random Forests , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[27]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[28]  Ayhan Demiriz,et al.  Semi-Supervised Support Vector Machines , 1998, NIPS.

[29]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[30]  Zhiwen Yu,et al.  A survey on ensemble learning , 2019, Frontiers of Computer Science.

[31]  Junnan Li,et al.  An effective framework based on local cores for self-labeled semi-supervised classification , 2020, Knowl. Based Syst..

[32]  Robert E. Schapire,et al.  The strength of weak learnability , 1990, Mach. Learn..

[33]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Ye Zhang,et al.  Hyperspectral Image Classification Based on Semi-Supervised Rotation Forest , 2017, Remote. Sens..

[35]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[37]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[38]  Zhi-Hua Zhou,et al.  Exploiting unlabeled data to enhance ensemble diversity , 2009, 2010 IEEE International Conference on Data Mining.

[39]  Alessandro Laio,et al.  Clustering by fast search and find of density peaks , 2014, Science.

[40]  Hamideh Afsarmanesh,et al.  Semi-supervised self-training for decision tree classifiers , 2017, Int. J. Mach. Learn. Cybern..

[41]  Pedro M. Domingos,et al.  Tree Induction for Probability-Based Ranking , 2003, Machine Learning.

[42]  Guoyin Wang,et al.  Self-training semi-supervised classification based on density peaks of data , 2018, Neurocomputing.

[43]  Juan José Rodríguez Diez,et al.  Rotation Forest: A New Classifier Ensemble Method , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[45]  Zhongsheng Hua,et al.  Semi-supervised learning based on nearest neighbor rule and cut edges , 2010, Knowl. Based Syst..

[46]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[47]  David Mease,et al.  Boosted Classification Trees and Class Probability/Quantile Estimation , 2007, J. Mach. Learn. Res..

[48]  Francisco Herrera,et al.  Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study , 2015, Knowledge and Information Systems.