Fluctuating Crosstalk as a Source of Deterministic Noise and Its Effects on GA Scalability

This paper explores how fluctuating crosstalk in a deterministic fitness function introduces noise into genetic algorithms. We model fluctuating crosstalk or nonlinear interactions among building blocks via higher-order Walsh coefficients. The fluctuating crosstalk behaves like exogenous noise and can be handled by increasing the population size and run duration. This behavior holds until the strength of the crosstalk far exceeds the underlying fitness variance by a certain factor empirically observed. Our results also have implications for the relative performance of building-block-wise mutation over crossover.

[1]  David E. Goldberg,et al.  Let's Get Ready to Rumble: Crossover Versus Mutation Head to Head , 2004, GECCO.

[2]  Heinz Mühlenbein,et al.  The response to selection equation for skew fitness distributions , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[3]  Yuval Davidor,et al.  Epistasis Variance: A Viewpoint on GA-Hardness , 1990, FOGA.

[4]  Franz Rothlauf,et al.  Evaluation-Relaxation Schemes for Genetic and Evolutionary Algorithms , 2004 .

[5]  L. Darrell Whitley,et al.  Predicting Epistasis from Mathematical Models , 1999, Evolutionary Computation.

[6]  Dirk Thierens,et al.  Elitist recombination: an integrated selection recombination GA , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[7]  Albert Donally Bethke,et al.  Genetic Algorithms as Function Optimizers , 1980 .

[8]  L. Darrell Whitley,et al.  Dynamic Representations and Escaping Local Optima: Improving Genetic Algorithms and Local Search , 2000, AAAI/IAAI.

[9]  David E. Goldberg,et al.  Genetic Algorithms, Tournament Selection, and the Effects of Noise , 1995, Complex Syst..

[10]  David E. Goldberg,et al.  Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise , 1996, Evolutionary Computation.

[11]  Heinz Mühlenbein,et al.  Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.

[12]  Heinz Mühlenbein,et al.  The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA) , 1993, Evolutionary Computation.

[13]  Kenneth A. De Jong,et al.  Are Genetic Algorithms Function Optimizers? , 1992, PPSN.

[14]  Thomas Bäck,et al.  Generalized Convergence Models for Tournament- and (mu, lambda)-Selection , 1995, ICGA.

[15]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[16]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part I, A Gentle Introduction , 1989, Complex Syst..

[17]  Ralph R. Martin,et al.  Reducing Epistasis in Combinatorial Problems by Expansive Coding , 1993, ICGA.

[18]  Lothar Thiele,et al.  A Mathematical Analysis of Tournament Selection , 1995, ICGA.

[19]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[20]  D. Falconer,et al.  Introduction to Quantitative Genetics. , 1961 .

[21]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[22]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[23]  David E. Goldberg,et al.  Linkage Problem, Distribution Estimation, and Bayesian Networks , 2000, Evolutionary Computation.

[24]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[25]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[26]  Dirk Thierens,et al.  Convergence Models of Genetic Algorithm Selection Schemes , 1994, PPSN.

[27]  M. Bulmer The Mathematical Theory of Quantitative Genetics , 1981 .