Neurorobotics: From Vision to Action

The lay view of a robot is a mechanical human, and thus robotics has always been inspired by attempts to emulate biology. In this chapter, we extend this biological motivation from humans to animals more generally, but with a focus on the central nervous systems in its relationship to the bodies of these creatures. In particular, we investigate the sensorimotor loop in the execution of sophisticated behavior. Some of these sections concentrate on cases where vision provides key sensory data. Neuroethology is the study of the brain mechanisms underlying animal behavior, and Sect. 77.2 exemplifies the lessons it has to offer robotics by looking at optic flow in bees, visually guided behavior in frogs, and navigation in rats, turning then to the coordination of behaviors and the role of attention. Brains are composed of diverse subsystems, many of which are relevant to robotics, but we have chosen just two regions of the mammalian brain for detailed analysis. Section 77.3 presents the cerebellum. While we can plan and execute actions without a cerebellum, the actions are no longer graceful and become uncoordinated. We reveal how a cerebellum can provide a key ingredient in an adaptive control system, tuning parameters both within and between motor schemas. Section 77.4 turns to the mirror system, which provides shared representations which bridge between the execution of an action and the observation of that action when performed by others. We develop a neurobiological model of how learning may forge mirror neurons for hand movements, provide a Bayesian view of a robot mirror system, and discuss what must be added to a mirror system to support robot imitation. We conclude by emphasizing that, while neuroscience can inspire novel robotic designs, it is also the case that robots can be used as embodied test beds for the analysis of brain models.

[1]  M. Arbib Levels of modeling of mechanisms of visually guided behavior , 1987, Behavioral and Brain Sciences.

[2]  B. Stein,et al.  The Merging of the Senses , 1993 .

[3]  T. S. Collett Do toads plan routes? A study of the detour behaviour ofBufo viridis , 2004, Journal of comparative physiology.

[4]  Paul M. Fitzpatrick,et al.  First contact: an active vision approach to segmentation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[5]  G. Holmes THE CEREBELLUM OF MAN , 1939 .

[6]  Michael A. Arbib,et al.  Mirror neurons and imitation: A computationally guided review , 2006, Neural Networks.

[7]  G. Rizzolatti,et al.  I Know What You Are Doing A Neurophysiological Study , 2001, Neuron.

[8]  Giacomo Rizzolatti,et al.  Grasping movements: visuomotor transformations , 1998 .

[9]  Michael A. Arbib,et al.  Recognizing speech in a novel accent: the motor theory of speech perception reframed , 2013, Biological Cybernetics.

[10]  L. Fadiga,et al.  The Motor Somatotopy of Speech Perception , 2009, Current Biology.

[11]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[12]  B. Edin Quantitative analyses of dynamic strain sensitivity in human skin mechanoreceptors. , 2004, Journal of neurophysiology.

[13]  Paul Cordo,et al.  Controversies in Neuroscience IV: Motor learning and synaptic plasticity in the cerebellum: Introduction , 1996 .

[14]  G. Rizzolatti,et al.  Action recognition in the premotor cortex. , 1996, Brain : a journal of neurology.

[15]  L. Itti,et al.  Modeling the influence of task on attention , 2005, Vision Research.

[16]  U. Norrsell,et al.  Behavioural repertory of cats without cerebral cortex from infancy , 1976, Experimental Brain Research.

[17]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[18]  M. Arbib,et al.  Multiple representations of space underlying behavior , 1982, Behavioral and Brain Sciences.

[19]  Michael Damsgaard,et al.  Numerical Simulation and Justification of Antagonists in Isometric Squatting , 2000 .

[20]  J. Schwartz,et al.  The Perception-for-Action-Control Theory (PACT): A perceptuo-motor theory of speech perception , 2012, Journal of Neurolinguistics.

[21]  David L Morgan,et al.  Stochastic resonance in muscle receptors. , 2004, Journal of neurophysiology.

[22]  Masahiro Fujita,et al.  An ethological and emotional basis for human-robot interaction , 2003, Robotics Auton. Syst..

[23]  K. Dautenhahn,et al.  Imitation in Animals and Artifacts , 2002 .

[24]  G. Rizzolatti,et al.  Parietal Lobe: From Action Organization to Intention Understanding , 2005, Science.

[25]  R. Johansson,et al.  Action plans used in action observation , 2003, Nature.

[26]  A Cobas,et al.  Prey-catching and predator-avoidance in frog and toad: defining the schemas. , 1992, Journal of theoretical biology.

[27]  D. Wolpert,et al.  Mental state inference using visual control parameters. , 2005, Brain research. Cognitive brain research.

[28]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.

[29]  Scott T. Grafton,et al.  Localization of grasp representations in humans by positron emission tomography , 1996, Experimental Brain Research.

[30]  Patrick van der Smagt Benchmarking cerebellar control Robotics and Autonomous Systems 32 (2000) 237-251 , 2000 .

[31]  Angelo Arleo,et al.  Combining Multimodal Sensory Input for Spatial Learning , 2002, ICANN.

[32]  Michael A. Arbib,et al.  Schema design and implementation of the grasp-related mirror neuron system , 2002, Biological Cybernetics.

[33]  K. Akert,et al.  The cerebellum as a neuronal machine , 1969 .

[34]  Patrick van der Smagt,et al.  Evidence of muscle synergies during human grasping , 2013, Biological Cybernetics.

[35]  Masao Ito The Cerebellum And Neural Control , 1984 .

[36]  Michael I. Jordan,et al.  The Handbook of Brain Theory and Neural Networks , 2002 .

[37]  L. Craighero,et al.  Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study , 1998, Neuropsychologia.

[38]  Jun Tani,et al.  Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB , 2004, Neural Networks.

[39]  Sangmoon Choi Biologically Motivated Visual Attention System Using Bottom-up Saliency Map and Top-down Inhibition , 2004 .

[40]  P. Smagt van der,et al.  Neural Systems for Robotics , 2012 .

[41]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[42]  Kenneth Johnson,et al.  Closing in on the neural mechanisms of finger joint angle sense. Focus on "Quantitative analysis of dynamic strain sensitivity in human skin mechanoreceptors". , 2004, Journal of neurophysiology.

[43]  Andrea d'Avella,et al.  Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. , 2006, Journal of neurophysiology.

[44]  W. T. Thach,et al.  Chapter 2 Modeling the cerebellum: From adaptation to coordination , 1995 .

[45]  Michael A. Arbib,et al.  Learning to Detour , 1995, Adapt. Behav..

[46]  Reza Shadmehr,et al.  Quantifying Generalization from Trial-by-Trial Behavior of Adaptive Systems that Learn with Basis Functions: Theory and Experiments in Human Motor Control , 2003, The Journal of Neuroscience.

[47]  Michael A. Arbib,et al.  Modeling parietal-premotor interactions in primate control of grasping , 1998, Neural Networks.

[48]  Aude Billard,et al.  Parallel and distributed neural models of the ideomotor principle: An investigation of imitative cortical pathways , 2006, Neural Networks.

[49]  Gerd Hirzinger,et al.  The cerebellum as computed torque model , 2000, KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516).

[50]  P. Dean,et al.  Event or emergency? Two response systems in the mammalian superior colliculus , 1989, Trends in Neurosciences.

[51]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[52]  Henrik Schiøler,et al.  Sociable Robots Through Self-Maintained Energy , 2006 .

[53]  M. A. Arbib,et al.  A Model of the Effects of Speed, Accuracy, and Perturbation on Visually Guided Reaching , 1992 .

[54]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[55]  Zoubin Ghahramani,et al.  Perspectives and problems in motor learning , 2001, Trends in Cognitive Sciences.

[56]  M. Srinivasan,et al.  Interactions of visual odometry and landmark guidance during food search in honeybees , 2005, Journal of Experimental Biology.

[57]  Bernhard Voelkl,et al.  Imitation as Faithful Copying of a Novel Technique in Marmoset Monkeys , 2007, PloS one.

[58]  Stefan Schaal,et al.  A Generalized Path Integral Control Approach to Reinforcement Learning , 2010, J. Mach. Learn. Res..

[59]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[60]  G. Rizzolatti,et al.  Localization of grasp representations in humans by PET: 1. Observation versus execution , 1996, Experimental Brain Research.

[61]  M. Arbib,et al.  Neural expectations : A possible evolutionary path from manual skills to language , 1996 .

[62]  M. Matarić,et al.  Fixation behavior in observation and imitation of human movement. , 1998, Brain research. Cognitive brain research.

[63]  A. Liberman,et al.  The motor theory of speech perception revised , 1985, Cognition.

[64]  Jun Tani,et al.  Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model , 2006, Neural Networks.

[65]  R. Didday A model of visuomotor mechanisms in the frog optic tectum , 1976 .

[66]  J. Mazziotta,et al.  Cortical mechanisms of human imitation. , 1999, Science.

[67]  W. Walter The Living Brain , 1963 .

[68]  W Reichardt,et al.  Autocorrelation, a principle for evaluation of sensory information by the central nervous system , 1961 .

[69]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[70]  Masao Ito Cerebellar circuitry as a neuronal machine , 2006, Progress in Neurobiology.

[71]  Patrick van der Smagt,et al.  Analysis and control of a rubbertuator arm , 1996, Biological Cybernetics.

[72]  K. Doya Complementary roles of basal ganglia and cerebellum in learning and motor control , 2000, Current Opinion in Neurobiology.

[73]  Antony Browne,et al.  Neural Network Perspectives on Cognition and Adaptive Robotics , 1997 .

[74]  M. Arbib,et al.  Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum , 1998, The European journal of neuroscience.

[75]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[76]  H. Gomi,et al.  Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals. , 1999, Journal of neurophysiology.

[77]  Michael A. Arbib,et al.  Affordances. Motivations, and the World Graph Theory , 1998, Adapt. Behav..

[78]  Jun Morimoto,et al.  Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives , 2010, IEEE Transactions on Robotics.

[79]  J. Ewert,et al.  Visuomotor Coordination: Amphibians, Comparisons, Models, and Robots , 1989 .

[80]  D I Perrett,et al.  Organization and functions of cells responsive to faces in the temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[81]  D. Bullock,et al.  How Spinal Neural Networks Reduce Discrepancies between Motor Intention and Motor Realization , 1991 .

[82]  A M Liberman,et al.  Perception of the speech code. , 1967, Psychological review.

[83]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[84]  Mitsuo Kawato,et al.  MOSAIC Model for Sensorimotor Learning and Control , 2001, Neural Computation.

[85]  Giorgio Metta,et al.  Grounding vision through experimental manipulation , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[86]  José Santos-Victor,et al.  Visual learning by imitation with motor representations , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[87]  Joseph McIntyre,et al.  Task Dependency of Grip Stiffness—A Study of Human Grip Force and Grip Stiffness Dependency during Two Different Tasks with Same Grip Forces , 2013, PloS one.

[88]  James S. Albus,et al.  Data Storage in the Cerebellar Model Articulation Controller (CMAC) , 1975 .

[89]  M. Arbib,et al.  Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control , 1998, The European journal of neuroscience.

[90]  Patrick van der Smagt Benchmarking cerebellar control , 2000, Robotics Auton. Syst..

[91]  B. Tondu,et al.  Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment , 2005, Neuroscience.

[92]  E. Rolls,et al.  Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex , 2003, The European journal of neuroscience.

[93]  Daniel Bullock,et al.  Guest Editorial for Special Issue on Scalable Applications of Neural Networks to Robotics , 2002, Applied Intelligence.

[94]  Dave Cliff Neuroethology, computational , 1998 .

[95]  Shih-Chii Liu,et al.  Fly-like visuomotor responses of a robot using aVLSI motion-sensitive chips , 2001, Biological Cybernetics.

[96]  Giorgio Metta,et al.  Object recognition using visuo-affordance maps , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[97]  G. Sandini,et al.  Understanding mirror neurons. , 2006 .

[98]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 2004, Experimental Brain Research.

[99]  Roberto Caminiti,et al.  Control of arm movement in space : neurophysiological and computational approaches , 1992 .

[100]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .

[101]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 1988, Experimental Brain Research.

[102]  Jan Peters,et al.  Searching a Scalable Approach to Cerebellar Based Control , 2002, Applied Intelligence.

[103]  Leonardo Fogassi,et al.  Mirror Neurons Responding to Observation of Actions Made with Tools in Monkey Ventral Premotor Cortex , 2005, Journal of Cognitive Neuroscience.

[104]  Giulio Sandini,et al.  An anthropomorphic retina-like structure for scene analysis , 1980 .

[105]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[106]  Michael A. Arbib,et al.  A formal model of computation for sensory-based robotics , 1989, IEEE Trans. Robotics Autom..

[107]  Michael Arbib,et al.  Extending the mirror neuron system model, I. Audible actions and invisible grasps. , 2007, Biological cybernetics.

[108]  Michael A. Arbib,et al.  Depth and detours: an essay on visually guided behavior , 1990 .

[109]  G. Rizzolatti,et al.  Neurophysiological mechanisms underlying the understanding and imitation of action , 2001, Nature Reviews Neuroscience.

[110]  Masayuki Inaba,et al.  From visuo-motor self learning to early imitation-a neural architecture for humanoid learning , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[111]  R. Byrne Imitation as behaviour parsing. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[112]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[113]  J. Albus A Theory of Cerebellar Function , 1971 .

[114]  B. Webb,et al.  Can robots make good models of biological behaviour? , 2001, Behavioral and Brain Sciences.

[115]  W. Thomas Miller,et al.  Real-time application of neural networks for sensor-based control of robots with vision , 1989, IEEE Trans. Syst. Man Cybern..

[116]  R. Beer,et al.  Intelligence as Adaptive Behavior: An Experiment in Computational Neuroethology , 1990 .

[117]  Geoffrey E. Hinton,et al.  Inferring Motor Programs from Images of Handwritten Digits , 2005, NIPS.

[118]  M V Srinivasan,et al.  Honeybee navigation: nature and calibration of the "odometer". , 2000, Science.

[119]  Jean-Arcady Meyer,et al.  The Psikharpax project: towards building an artificial rat , 2005, Robotics Auton. Syst..

[120]  Giulio Sandini,et al.  The Use of Phonetic Motor Invariants Can Improve Automatic Phoneme Discrimination , 2011, PloS one.

[121]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[122]  D. Ingle Visual Releasers of Prey-Catching Behavior in Frogs and Toads , 1968 .

[123]  David G. Stork,et al.  Pattern Classification , 1973 .

[124]  Alexander Borst,et al.  Visual course control in flies , 2003 .

[125]  G. Rizzolatti,et al.  Premotor cortex and the recognition of motor actions. , 1996, Brain research. Cognitive brain research.

[126]  Michael I. Jordan,et al.  Forward Models: Supervised Learning with a Distal Teacher , 1992, Cogn. Sci..

[127]  M. A. Arbib,et al.  Models of Trajectory Formation and Temporal Interaction of Reach and Grasp. , 1993, Journal of motor behavior.

[128]  Patrick van der Smagt Cerebellar Control of Robot Arms , 1998, Connect. Sci..

[129]  Idan Segev,et al.  Dendritic processing , 1998 .

[130]  Stefan Schaal,et al.  Computational approaches to motor learning by imitation. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[131]  A. Georgopoulos,et al.  Parietal cortex neurons of the monkey related to the visual guidance of hand movement , 1990, Experimental Brain Research.

[132]  Giorgio Metta,et al.  YARP: Yet Another Robot Platform , 2006 .

[133]  S. Schaal,et al.  Computational motor control in humans and robots , 2005, Current Opinion in Neurobiology.

[134]  Michael A. Arbib,et al.  Visuomotor Coordination: Neural Models and Perceptual Robotics , 1989 .

[135]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[136]  J. Gibson The Senses Considered As Perceptual Systems , 1967 .

[137]  R. Brooks,et al.  The cog project: building a humanoid robot , 1999 .

[138]  Patrick van der Smagt,et al.  Visual feedback in motion , 1997 .

[139]  Jean-Arcady Meyer,et al.  Integration of Navigation and Action Selection Functionalities in a Computational Model of Cortico-Basal-Ganglia–Thalamo-Cortical Loops , 2005, Adapt. Behav..

[140]  G. Rizzolatti,et al.  Motor facilitation during action observation: a magnetic stimulation study. , 1995, Journal of neurophysiology.

[141]  D. Glencross,et al.  Motor control and sensory motor integration : issues and directions , 1995 .

[142]  Bruce H. Krogh,et al.  Integrated path planning and dynamic steering control for autonomous vehicles , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[143]  M. Arbib,et al.  Language within our grasp , 1998, Trends in Neurosciences.

[144]  A. Woodward Infants selectively encode the goal object of an actor's reach , 1998, Cognition.

[145]  Karl M. Newell,et al.  Variability and Motor Control , 1993 .

[146]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[147]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[148]  K. Doya,et al.  A unifying computational framework for motor control and social interaction. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[149]  L. Fadiga,et al.  Active perception: sensorimotor circuits as a cortical basis for language , 2010, Nature Reviews Neuroscience.

[150]  D M Wolpert,et al.  Multiple paired forward and inverse models for motor control , 1998, Neural Networks.

[151]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[152]  Christophe Sabourin,et al.  Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks , 2005, Robotics Auton. Syst..

[153]  B. Edin Cutaneous afferents provide information about knee joint movements in humans , 2001, The Journal of physiology.

[154]  Jack M. Winters,et al.  Biomechanics and Neural Control of Posture and Movement , 2011, Springer New York.

[155]  Michael B. Reiser,et al.  A test bed for insect-inspired robotic control , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[156]  Yiannis Demiris,et al.  Distributed, predictive perception of actions: a biologically inspired robotics architecture for imitation and learning , 2003, Connect. Sci..

[157]  R. Weller Two cortical visual systems in Old World and New World primates. , 1988, Progress in brain research.

[158]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[159]  Scott H. Johnson-Frey The neural bases of complex tool use in humans , 2004, Trends in Cognitive Sciences.

[160]  Giulio Sandini,et al.  Towards a Theoretical Framework for Learning Multi-modal Patterns for Embodied Agents , 2009, ICIAP.

[161]  C. Nehaniv Imitation and Social Learning in Robots, Humans and Animals: Nine billion correspondence problems , 2007 .

[162]  Giulio Sandini,et al.  Object-based Visual Attention: a Model for a Behaving Robot , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[163]  Patrick van der Smagt,et al.  Teaching a Robot to See How it Moves , 2019, Neural Network Perspectives on Cognition and Adaptive Robotics.

[164]  Chrystopher L. Nehaniv,et al.  Imitation as a Dual-Route Process Featuring Predictive and Learning Components: A Biologically Plausible Computational Model , 2002 .

[165]  K. Dautenhahn,et al.  Imitation and Social Learning in Robots, Humans and Animals: Behavioural, Social and Communicative Dimensions , 2009 .

[166]  M. Arbib From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics , 2005, Behavioral and Brain Sciences.

[167]  G. Rizzolatti,et al.  Speech listening specifically modulates the excitability of tongue muscles: a TMS study , 2002, The European journal of neuroscience.

[168]  Michael A. Arbib,et al.  Extending the mirror neuron system model, I , 2007, Biological Cybernetics.

[169]  Aude Billard,et al.  Learning Stable Nonlinear Dynamical Systems With Gaussian Mixture Models , 2011, IEEE Transactions on Robotics.

[170]  M. Arbib Action to language via the mirror neuron system , 2006 .

[171]  V. Braitenberg,et al.  Taxis, kinesis and decussation. , 1965, Progress in brain research.

[172]  D. Wolpert,et al.  Is the cerebellum a smith predictor? , 1993, Journal of motor behavior.

[173]  Giorgio Metta,et al.  Deep-level acoustic-to-articulatory mapping for DBN-HMM based phone recognition , 2012, 2012 IEEE Spoken Language Technology Workshop (SLT).

[174]  M. Srinivasan,et al.  Landing Strategies in Honeybees, and Possible Applications to Autonomous Airborne Vehicles , 2001, The Biological Bulletin.

[175]  Stéphane Viollet,et al.  Bio-inspired optical flow circuits for the visual guidance of micro air vehicles , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[176]  A. Barto,et al.  Models of the cerebellum and motor learning , 1996 .

[177]  Michael A. Arbib,et al.  Synthetic brain imaging: grasping, mirror neurons and imitation , 2000, Neural Networks.

[178]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[179]  M. Srinivasan,et al.  Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L.) , 2006, Journal of Experimental Biology.

[180]  M V Srinivasan,et al.  Visual control of honeybee flight. , 1997, EXS.

[181]  R. Johansson,et al.  Prediction Precedes Control in Motor Learning , 2003, Current Biology.

[182]  M. Kawato,et al.  A hierarchical neural-network model for control and learning of voluntary movement , 2004, Biological Cybernetics.

[183]  R. Johansson,et al.  Independent control of human finger‐tip forces at individual digits during precision lifting. , 1992, The Journal of physiology.

[184]  Michael A. Arbib,et al.  Perceptual Structures and Distributed Motor Control , 1981 .

[185]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.