Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas

Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.

[1]  J. DeFelipe,et al.  Density and morphology of dendritic spines in mouse neocortex , 2006, Neuroscience.

[2]  Rafael Yuste,et al.  Genesis of dendritic spines: insights from ultrastructural and imaging studies , 2004, Nature Reviews Neuroscience.

[3]  Michael A. Stephens,et al.  Multi-sample tests for the Fisher distribution for directions , 1969 .

[4]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[5]  Hermann Cuntz,et al.  A scaling law derived from optimal dendritic wiring , 2012, Proceedings of the National Academy of Sciences.

[6]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[7]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[8]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[9]  James Kozloski,et al.  Self-referential forces are sufficient to explain different dendritic morphologies , 2013, Front. Neuroinform..

[10]  G. S. Watson Statistics on Spheres , 1983 .

[11]  Bartlett W. Mel,et al.  Cortical rewiring and information storage , 2004, Nature.

[12]  J. Kaas,et al.  Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. , 2006, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[13]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[14]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[15]  J. Changeux,et al.  Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors , 2010, Proceedings of the National Academy of Sciences.

[16]  Alexander Borst,et al.  One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application , 2010, PLoS Comput. Biol..

[17]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[18]  Michael A. Stephens,et al.  Tests of fit for the von Mises distribution , 1985 .

[19]  T. Usui,et al.  An evolutionarily conserved protein CHORD regulates scaling of dendritic arbors with body size , 2014, Scientific Reports.

[20]  Kristen M Harris,et al.  Dendritic Spine Pathology: Cause or Consequence of Neurological Disorders? , 2002, Brain Research Reviews.

[21]  A. Scheibel,et al.  A quantitative dendritic analysis of wernicke's area in humans. II. Gender, hemispheric, and environmental factors , 1993, The Journal of comparative neurology.

[22]  M. Landgraf,et al.  Control of dendritic diversity. , 2005, Current opinion in cell biology.

[23]  真弘 大谷,et al.  Biophysics of Computation Information Processing in Single Neuron , 2004 .

[24]  Rafael Yuste,et al.  Dendritic size of pyramidal neurons differs among mouse cortical regions. , 2006, Cerebral cortex.

[25]  Dmitri B Chklovskii,et al.  A cost-benefit analysis of neuronal morphology. , 2008, Journal of neurophysiology.

[26]  G. S. Watson,et al.  ON THE CONSTRUCTION OF SIGNIFICANCE TESTS ON THE CIRCLE AND THE SPHERE , 1956 .

[27]  Rafael Yuste,et al.  Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. , 2013, Cerebral cortex.

[28]  G. Elston,et al.  The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey , 2001, The Journal of Neuroscience.

[29]  Bartlett W. Mel Why Have Dendrites? A Computational Perspective , 1999 .

[30]  E. White Cortical Circuits: Synaptic Organization of the Cerebral Cortex , 1989 .

[31]  P. Hof,et al.  Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans. , 2013, Cerebral cortex.

[32]  G. Ascoli,et al.  Statistical morphological analysis of hippocampal principal neurons indicates cell‐specific repulsion of dendrites from their own cell , 2003, Journal of neuroscience research.

[33]  Harry B. M. Uylings,et al.  The Flatness of Bifurcations in 3D Dendritic Trees: An Optimal Design , 2012, Front. Comput. Neurosci..

[34]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[35]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[36]  J. Bourne,et al.  Balancing structure and function at hippocampal dendritic spines. , 2008, Annual review of neuroscience.

[37]  Robert Sinclair,et al.  Geometric Theory Predicts Bifurcations in Minimal Wiring Cost Trees in Biology Are Flat , 2012, PLoS Comput. Biol..

[38]  J. Jacobs,et al.  Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. , 2001, Cerebral cortex.

[39]  Dmitri B Chklovskii,et al.  Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors , 2009, Proceedings of the National Academy of Sciences.

[40]  Concha Bielza,et al.  Models and Simulation of 3D Neuronal Dendritic Trees Using Bayesian Networks , 2011, Neuroinformatics.

[41]  G. S. Watson,et al.  Goodness-of-fit tests on a circle. II , 1961 .