Stationary quantum correlations in Tavis–Cumming model induced by continuous dephasing process

[1]  G. Guo,et al.  Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems , 2011, 1109.2677.

[2]  R. Laflamme,et al.  Experimental detection of nonclassical correlations in mixed-state quantum computation , 2011, 1105.2262.

[3]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[4]  Jyrki Piilo,et al.  Measure for the non-Markovianity of quantum processes , 2010, 1002.2583.

[5]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[6]  He-Shan Song,et al.  Dynamics of pairwise entanglement between two Tavis–Cummings atoms , 2008 .

[7]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[8]  J. Eisert,et al.  Creating and probing multipartite macroscopic entanglement with light. , 2006, Physical review letters.

[9]  Aires Ferreira,et al.  Optomechanical entanglement between a movable mirror and a cavity field , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[10]  Ting Yu,et al.  Evolution from entanglement to decoherence of bipartite mixed "X" states , 2005, Quantum Inf. Comput..

[11]  N. J. Cerf,et al.  Multipartite nonlocality without entanglement in many dimensions , 2006 .

[12]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.

[13]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[14]  D. A. Lidar,et al.  Control of decoherence: Analysis and comparison of three different strategies (22 pages) , 2005 .

[15]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[16]  P. Knight,et al.  Entanglement induced by a single-mode heat environment , 2001, quant-ph/0109052.

[17]  Subsystem purity as an enforcer of entanglement. , 2001, Physical review letters.

[18]  A. Korotkov Selective quantum evolution of a qubit state due to continuous measurement , 2000, cond-mat/0008461.

[19]  Nathan,et al.  Continuous quantum measurement of two coupled quantum dots using a point contact: A quantum trajectory approach , 2000, cond-mat/0006333.

[20]  P. Facchi,et al.  From the quantum zeno to the inverse quantum zeno effect. , 2000, Physical review letters.

[21]  Chang-pu Sun,et al.  Quantum measurement via Born-Oppenheimer adiabatic dynamics , 2000 .

[22]  Todd A. Brun Continuous measurements, quantum trajectories, and decoherent histories , 2000 .

[23]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[24]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[25]  R. Onofrio,et al.  LINDBLAD APPROACH TO NONLINEAR JAYNES-CUMMINGS DYNAMICS OF A TRAPPED ION , 1997, quant-ph/9705015.

[26]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[27]  P. Busch,et al.  The quantum theory of measurement , 1991 .

[28]  Mark D. Semon,et al.  New Techniques and Ideas in Quantum Measurement Theory , 1988 .

[29]  A. Peres When is a quantum measurement , 1986 .

[30]  J. Wheeler,et al.  Quantum theory and measurement , 1983 .

[31]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[32]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[33]  F. W. Cummings,et al.  Exact Solution for an N-Molecule-Radiation-Field Hamiltonian , 1968 .

[34]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .