Concurrent Object Identification and Localization for a Mobile Robot

Identification and localization of task-relevant objects is an essential problem for advanced service robots. We integrate state-of-the-art techniques both for object identification and object localization to solve this problem. Based on a multilevel spatial representation architecture, our approach integrates methods for mapping, self-localization and spatial reasoning for navigation with visual attention, feature detection, and hierarchical neural classifiers. By combining probabilistic representations with qualitative spatial representations, the robot can robustly localize and navigate to previously detected objects, and also associate symbolic knowledge with task-relevant objects, which is essential for task planning and interaction with humans.

[1]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[2]  Heiko Neumann,et al.  Robot navigation by combining central and peripheral optical flow detection on a space-variant map , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[3]  Anthony G. Cohn,et al.  Combining multiple representations in a spatial reasoning system , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[4]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[5]  Wolfram Burgard,et al.  An experimental comparison of localization methods , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[6]  Sebastian Thrun,et al.  Learning Maps for Indoor Mobile Robot Navigation. , 1996 .

[7]  Günther Palm,et al.  Object Classification Using Simple, Colour Based Visual Attention and a Hierarchical Neural Network for Neuro-symbolic Integration , 1999, KI.

[8]  Günther Palm,et al.  SFB 527: Integration symbolischer und subsymbolischer Informationsverarbeitung in adaptiven sensomotorischen Systemen , 1997, GI Jahrestagung.

[9]  Anthony G. Cohn,et al.  Calculi for Qualitative Spatial Reasoning , 1996, AISMC.

[10]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[11]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[12]  Günther Palm,et al.  The wall histogram method , 1999 .

[13]  Robert M. MacGregor Using a description classifier to enhance deductive inference , 1991, [1991] Proceedings. The Seventh IEEE Conference on Artificial Intelligence Application.

[14]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[15]  Jochen S. Gutmann Vergleich von algorithmen zur selbstlokalisierung eines mobilen roboters , 1996 .

[16]  Alberto Elfes,et al.  Sensor integration for robot navigation: Combining sonar and stereo range data in a grid-based representataion , 1987, 26th IEEE Conference on Decision and Control.

[17]  S. Enderle,et al.  Sonar interpretation learned from laser data , 1999, 1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355).

[18]  Wolfram Burgard,et al.  A Probabilistic Approach to Collaborative Multi-Robot Localization , 2000, Auton. Robots.

[19]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[20]  James F. Allen Time and time again: The many ways to represent time , 1991, Int. J. Intell. Syst..

[21]  Dieter Fox,et al.  Markov localization - a probabilistic framework for mobile robot localization and navigation , 1998 .

[22]  Jürgen Schürmann,et al.  Pattern classification , 1996 .

[23]  William T. Freeman,et al.  Orientation Histograms for Hand Gesture Recognition , 1995 .