Computational models of the neural bases of learning and memory.

[1]  M. Kuperstein,et al.  Cue-sampling and goal-approach correlates of hippocampal unit activity in rats performing an odor-discrimination task , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  G. Shepherd,et al.  Logic operations are properties of computer-simulated interactions between excitable dendritic spines , 1987, Neuroscience.

[3]  B. Slotnick,et al.  Olfactory Learning-Set Formation in Rats , 1974, Science.

[4]  R. Nicoll,et al.  Inhibitory mechanisms in the rabbit olfactory bulb: dendrodendritic mechanisms. , 1969, Brain research.

[5]  Larry R. Squire,et al.  CHAPTER 6 – THE NEUROLOGY OF MEMORY: THE CASE FOR CORRESPONDENCE BETWEEN THE FINDINGS FOR HUMAN AND NONHUMAN PRIMATE1 , 1983 .

[6]  K. Mori Membrane and synaptic properties of identified neurons in the olfactory bulb , 1987, Progress in Neurobiology.

[7]  Richard Granger,et al.  Behavioral Tests of a Prediction from a Cortical Network Simulation , 1991 .

[8]  L. Kamin Predictability, surprise, attention, and conditioning , 1967 .

[9]  G. Lynch,et al.  Antagonism of NMDA receptors impairs acquisition but not retention of olfactory memory. , 1989, Behavioral neuroscience.

[10]  D. G. Moulton,et al.  Spatial patterning of response to odors in the peripheral olfactory system. , 1976, Physiological reviews.

[11]  G. Lynch,et al.  Olfaction and the "data" memory system in rats. , 1987, Behavioral neuroscience.

[12]  N. Schmajuk,et al.  Stimulus configuration, classical conditioning, and hippocampal function. , 1992, Psychological review.

[13]  David Zipser,et al.  Feature Discovery by Competive Learning , 1986, Cogn. Sci..

[14]  Gary Lynch,et al.  Anoxia reveals a vulnerable period in the development of long-term potentiation , 1990, Brain Research.

[15]  Wayne A. Wickelgren,et al.  Chunking and consolidation: A theoretical synthesis of semantic networks configuring in conditioning , 1979 .

[16]  Arthur P. Shimamura,et al.  The neurology of memory: quantitative assessment of retrograde amnesia in two groups of amnesic patients , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  K. Pribram,et al.  Learning and limbic lesions , 1966 .

[18]  G. Lynch,et al.  The effects of repetitive low frequency stimulation on control and "potentiated" synaptic responses in the hippocampus. , 1980, Life sciences.

[19]  L. Haberly Neuronal circuitry in olfactory cortex: anatomy and functional implications , 1985 .

[20]  Michael Hassul,et al.  Cerebellar Dynamics: The Mossy Fiber Input , 1977, IEEE Transactions on Biomedical Engineering.

[21]  L. Cooper,et al.  Synaptic plasticity in visual cortex: comparison of theory with experiment. , 1991, Journal of neurophysiology.

[22]  Mark A. Gluck,et al.  A biological neural network analysis of learning and memory , 1990 .

[23]  J. Theios,et al.  Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus). , 1972, Journal of comparative and physiological psychology.

[24]  B. McNaughton,et al.  Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents , 1978, Brain Research.

[25]  N. Mackintosh,et al.  Successful overshadowing and blocking in hippocampectomized rats , 1984, Behavioural Brain Research.

[26]  Richard F. Thompson The neural basis of basic associative learning of discrete behavioral responses , 1988, Trends in Neurosciences.

[27]  J. O’Keefe,et al.  A computational theory of the hippocampal cognitive map. , 1990, Progress in brain research.

[28]  A. Allison,et al.  THE MORPHOLOGY OF THE OLFACTORY SYSTEM IN THE VERTEBRATES , 1953 .

[29]  H. Wigström,et al.  Long-term potentiation in the hippocampal CA1 region: its induction and early temporal development. , 1990, Progress in brain research.

[30]  R. Nicoll,et al.  A persistent postsynaptic modification mediates long-term potentiation in the hippocampus , 1988, Neuron.

[31]  S.Arif Kamal,et al.  Space-Time Representation in the Brain. , 1992 .

[32]  S G Lisberger,et al.  The latency of pathways containing the site of motor learning in the monkey vestibulo-ocular reflex. , 1984, Science.

[33]  D. Alkon,et al.  Hippocampal lesions impair memory of short-delay conditioned eye blink in rabbits. , 1989, Behavioral neuroscience.

[34]  G. Buzsáki,et al.  Polysynaptic long-term potentiation: A physiological role of the perforant path-CA3/CA1 pyramidal cell synapse , 1988, Brain Research.

[35]  G. Handelmann,et al.  Hippocampus, space, and memory , 1979 .

[36]  G. Collingridge,et al.  Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. , 1983, The Journal of physiology.

[37]  J. Zimmer Ipsilateral afferents to the commissural zone of the fascia dentata, demonstrated in decommissurated rats by silver impregnation , 1971, The Journal of comparative neurology.

[38]  A. Keller,et al.  Long-term potentiation in the motor cortex. , 1989, Science.

[39]  L. Squire,et al.  Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. , 1980, Science.

[40]  E. W. Kairiss,et al.  Hebbian synapses: biophysical mechanisms and algorithms. , 1990, Annual review of neuroscience.

[41]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[42]  T. Berger Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning. , 1984, Science.

[43]  G M Shepherd,et al.  Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. , 1966, Experimental neurology.

[44]  N. Schmajuk,et al.  A neural network approach to hippocampal function in classical conditioning. , 1991, Behavioral neuroscience.

[45]  L. Squire,et al.  Neuroanatomy of memory. , 1993, Annual review of neuroscience.

[46]  J. Bower,et al.  Olfactory cortex: model circuit for study of associative memory? , 1989, Trends in Neurosciences.

[47]  G. Buzsáki Two-stage model of memory trace formation: A role for “noisy” brain states , 1989, Neuroscience.

[48]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[49]  T. Dunwiddie,et al.  Characteristics of hippocampal primed burst potentiation in vitro and in the awake rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  G. Bower,et al.  Evaluating an adaptive network model of human learning , 1988 .

[51]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[52]  Richard F. Thompson The neurobiology of learning and memory. , 1986, Science.

[53]  S. Deadwyler,et al.  Entorhinal and septal inputs differentially control sensory-evoked responses in the rat dentate gyrus. , 1981, Science.

[54]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents , 1975, Brain Research.

[55]  C. Pavlides,et al.  Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of θ-rhythm , 1988, Brain Research.

[56]  L. Squire,et al.  The primate hippocampal formation: evidence for a time-limited role in memory storage. , 1990, Science.

[57]  B. McNaughton,et al.  Dead Reckoning, Landmark Learning, and the Sense of Direction: A Neurophysiological and Computational Hypothesis , 1991, Journal of Cognitive Neuroscience.

[58]  R. Morris,et al.  Place navigation impaired in rats with hippocampal lesions , 1982, Nature.

[59]  JOHN W. Moore,et al.  Goal tracking in attentional-associative networks: Spatial learning and the hippocampus , 1982 .

[60]  E. Grastyán,et al.  Hippocampal electrical activity during the development of conditioned reflexes. , 1959, Electroencephalography and clinical neurophysiology.

[61]  T. Sejnowski Neural populations revealed , 1988, Nature.

[62]  F. Macrides,et al.  Temporal relationships between hippocampal slow waves and exploratory sniffing in hamsters. , 1975, Behavioral biology.

[63]  Marc G. Weisskopf,et al.  Horizontal long-term potentiation of responses in rat somatosensory cortex , 1991, Brain Research.

[64]  W. Singer,et al.  Long-term potentiation and NMDA receptors in rat visual cortex , 1987, Nature.

[65]  R. Sutherland,et al.  Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia , 1989, Psychobiology.

[66]  C. Koch,et al.  The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. , 1987, Science.

[67]  Richard Hirsh,et al.  The hippocampus, conditional operations, and cognition , 1980 .

[68]  David B. Parker,et al.  A comparison of algorithms for neuron-like cells , 1987 .

[69]  Geoffrey E. Hinton,et al.  Parallel visual computation , 1983, Nature.

[70]  JOHN W. Moore,et al.  Real-time attentional models for classical conditioning and the hippocampus , 1985 .

[71]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  J. Eccles An instruction-selection theory of learning in the cerebellar cortex , 1977, Brain Research.

[73]  B. McNaughton,et al.  Hebb-Marr networks and the neurobiological representation of action in space. , 1990 .

[74]  W. Singer,et al.  Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex , 1990, Nature.

[75]  L. Nadel,et al.  Fornix lesions selectively abolish place learning in the rat , 1975, Experimental Neurology.

[76]  G. Winocur,et al.  The hippocampus and conditioning to contextual cues. , 1987, Behavioral neuroscience.

[77]  Gary Lynch,et al.  Role of N-methyl-D-aspartate receptors in the induction of synaptic potentiation by burst stimulation patterned after the hippocampal θ-rhythm , 1988, Brain Research.