Numerical Optimization with Real-Valued Estimation-of-Distribution Algorithms

In this chapter we focus on the design of real–valued EDAs for the task of numerical optimization. Here, both the problem variables as well as their encoding are real values. Concordantly, the type of probability distribution to be used for estimation and sampling in the EDA is continuous. In this chapter we indicate the main challenges in this area. Furthermore, we review the existing literature to indicate the current EDA practice for real–valued numerical optimization. Based on observations originating from this existing research and on existing work in the literature regarding dynamics of continuous EDAs, we draw some conclusions about the feasibility of existing EDA approaches. Also we provide an explanation for some observed deficiencies of continuous EDAs as well as possible improvements and future directions of research in this branch of EDAs.

[1]  Helder Coelho,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms by David E. Goldberg , 2005, J. Artif. Soc. Soc. Simul..

[2]  Byoung-Tak Zhang,et al.  Bayesian evolutionary algorithms for continuous function optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[3]  Rich Caruana,et al.  Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.

[4]  Peter A. N. Bosman,et al.  Matching inductive search bias and problem structure in continuous Estimation-of-Distribution Algorithms , 2008, Eur. J. Oper. Res..

[5]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[6]  Heinz Mühlenbein,et al.  The Estimation of Distributions and the Minimum Relative Entropy Principle , 2005, Evol. Comput..

[7]  P. Bosman,et al.  Continuous iterated density estimation evolutionary algorithms within the IDEA framework , 2000 .

[8]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[9]  Michael I. Jordan Graphical Models , 1998 .

[10]  Stefan Minner,et al.  An analysis of iterated density estimation and sampling in the UMDA c algorithm , 2022 .

[11]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[12]  I. Jolliffe Principal Component Analysis , 2002 .

[13]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[14]  David E. Goldberg,et al.  Hierarchical BOA Solves Ising Spin Glasses and MAXSAT , 2003, GECCO.

[15]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  Byoung-Tak Zhang,et al.  Evolutionary optimization by distribution estimation with mixtures of factor analyzers , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[18]  Petr Posík Distribution Tree-Building Real-Valued Evolutionary Algorithm , 2004, PPSN.

[19]  Petros Koumoutsakos,et al.  A Mixed Bayesian Optimization Algorithm with Variance Adaptation , 2004, PPSN.

[20]  Byoung-Tak Zhang,et al.  Evolutionary Continuous Optimization by Distribution Estimation with Variational Bayesian Independent Component Analyzers Mixture Model , 2004, PPSN.

[21]  Dirk Thierens,et al.  Expanding from Discrete to Continuous Estimation of Distribution Algorithms: The IDEA , 2000, PPSN.

[22]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[23]  Marcus Gallagher,et al.  On the importance of diversity maintenance in estimation of distribution algorithms , 2005, GECCO '05.

[24]  Wray L. Buntine Operations for Learning with Graphical Models , 1994, J. Artif. Intell. Res..

[25]  Dong-Yeon Cho,et al.  Continuous estimation of distribution algorithms with probabilistic principal component analysis , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[26]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[27]  David E. Goldberg,et al.  Real-Coded Bayesian Optimization Algorithm: Bringing the Strength of BOA into the Continuous World , 2004, GECCO.

[28]  Josef Schwarz,et al.  Estimation Distribution Algorithm for mixed continuous-discrete optimization problems , 2002 .

[29]  Michèle Sebag,et al.  Extending Population-Based Incremental Learning to Continuous Search Spaces , 1998, PPSN.

[30]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[31]  Marcus Gallagher,et al.  Real-valued Evolutionary Optimization using a Flexible Probability Density Estimator , 1999, GECCO.

[32]  Franz Rothlauf,et al.  Behaviour of UMDA/sub c/ with truncation selection on monotonous functions , 2005, 2005 IEEE Congress on Evolutionary Computation.

[33]  D. Edwards Introduction to graphical modelling , 1995 .

[34]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[35]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[36]  Pedro Larrañaga,et al.  Optimization in Continuous Domains by Learning and Simulation of Gaussian Networks , 2000 .

[37]  Dirk Thierens,et al.  Advancing continuous IDEAs with mixture distributions and factorization selection metrics , 2001 .

[38]  David E. Goldberg,et al.  Genetic Algorithms, Clustering, and the Breaking of Symmetry , 2000, PPSN.

[39]  D. Goldberg,et al.  Evolutionary Algorithm Using Marginal Histogram Models in Continuous Domain , 2007 .

[40]  Peter A. N. Bosman,et al.  Design and Application of iterated Density-Estimation Evolutionary Algorithms , 2003 .

[41]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[42]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[43]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[44]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[45]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[46]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[47]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[48]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[49]  Petros Koumoutsakos,et al.  Learning Probability Distributions in Continuous Evolutionary Algorithms - a Comparative Review , 2004, Nat. Comput..

[50]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[51]  SchwefelHans-Paul,et al.  An overview of evolutionary algorithms for parameter optimization , 1993 .

[52]  Christopher M. Bishop Latent Variable Models , 1998, Learning in Graphical Models.

[53]  Stephen J. Roberts,et al.  Variational Mixture of Bayesian Independent Component Analyzers , 2003, Neural Computation.

[54]  Andrew McCallum,et al.  Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data , 2004, J. Mach. Learn. Res..

[55]  Louise Travé-Massuyès,et al.  Telephone Network Traffic Overloading Diagnosis and Evolutionary Computation Techniques , 1997, Artificial Evolution.

[56]  Christopher M. Bishop,et al.  Classification and regression , 1997 .

[57]  Dirk Thierens,et al.  Exploiting gradient information in continuous iterated density estimation evolutionary algorithms , 2001 .

[58]  T. Gerig Multivariate Analysis: Techniques for Educational and Psychological Research , 1975 .

[59]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .