Optimum Design of Artificial Lateral Line Systems for Object Tracking under Uncertain Conditions

This study develops a method for optimum design of an artificial lateral line system, which tracks underwater objects by using the extended Kalman Filter (EKF). Sensor noise and model uncertainty are considered for design optimization. Dependency of the optimum setting of the EKF and the design parameters on the amount of uncertainty is investigated as well.

[1]  Nikolaus Hansen,et al.  Benchmarking a BI-population CMA-ES on the BBOB-2009 noisy testbed , 2009, GECCO '09.

[2]  El-S. Hassan Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis , 2004, Biological Cybernetics.

[3]  Xiaobo Tan,et al.  Microfabrication of IPMC cilia for bio-inspired flow sensing , 2012, Smart Structures.

[4]  Derek A. Paley,et al.  Observability-based optimization for flow sensing and control of an underwater vehicle in a uniform flowfield , 2013, 2013 American Control Conference.

[5]  Jin-Su Kang,et al.  Robust optimization for engineering design , 2012 .

[6]  Xiaobo Tan,et al.  Underwater tracking of a moving dipole source using an artificial lateral line: algorithm and experimental validation with ionic polymer–metal composite flow sensors , 2013 .

[7]  G. Krijnen,et al.  Dipole-source localization using biomimetic flow-sensor arrays positioned as lateral-line system , 2010 .

[8]  H. Bleckmann,et al.  Hydrodynamic stimuli and the fish lateral line , 2000, Nature.

[9]  Christoph Brücker,et al.  Station Holding of Trout: Behavior, Physiology and Hydrodynamics , 2012 .

[10]  Hong Lei,et al.  Design optimization of an artificial lateral line system incorporating flow and sensor uncertainties , 2017 .

[11]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[12]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[13]  Maarja Kruusmaa,et al.  Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows , 2012, Bioinspiration & biomimetics.

[14]  Lily D. Chambers,et al.  A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow , 2014, Journal of The Royal Society Interface.

[15]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[16]  Kalyanmoy Deb,et al.  Design optimization of artificial lateral line system under uncertain conditions , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[17]  C. Campenhausen,et al.  Detection of stationary objects by the blind Cave FishAnoptichthys jordani (Characidae) , 1981, Journal of comparative physiology.

[18]  Gabriel Weymouth,et al.  Hydrodynamic object recognition using pressure sensing , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  H. Bleckmann,et al.  Peripheral and central processing of lateral line information , 2008, Journal of Comparative Physiology A.

[20]  H. Bleckmann Reception of hydrodynamic stimuli in aquatic and semiaquatic animals , 1994 .

[21]  Hong Lei,et al.  Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line , 2015, Bioinspiration & biomimetics.

[22]  T. Pitcher,et al.  A blind fish can school. , 1976, Science.

[23]  Xiaobo Tan,et al.  Nonlinear estimation-based dipole source localization for artificial lateral line systems , 2013, Bioinspiration & biomimetics.

[24]  Nikolaus Hansen,et al.  Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed , 2009, GECCO '09.

[25]  Xiaobo Tan,et al.  Underwater Tracking and Size-Estimation of a Moving Object Using an IPMC Artificial Lateral Line , 2012 .

[26]  K. Mohseni,et al.  A model of the lateral line of fish for vortex sensing , 2010, Bioinspiration & biomimetics.