A Selective Attention-Based Method for Visual Pattern Recognition with Application to Handwritten Digit Recognition and Face Recognition

Parallel pattern recognition requires great computational resources; it is NP-complete. From an engineering point of view it is desirable to achieve good performance with limited resources. For this purpose, we develop a serial model for visual pattern recognition based on the primate selective attention mechanism. The idea in selective attention is that not all parts of an image give us information. If we can attend only to the relevant parts, we can recognize the image more quickly and using less resources. We simulate the primitive, bottom-up attentive level of the human visual system with a saliency scheme and the more complex, top-down, temporally sequential associative level with observable Markov models. In between, there is a neural network that analyses image parts and generates posterior probabilities as observations to the Markov model. We test our model first on a handwritten numeral recognition problem and then apply it to a more complex face recognition problem. Our results indicate the promise of this approach in complicated vision applications.

[1]  Rajesh P. N. Rao,et al.  Eye Movements in Visual Cognition: A Computational Study , 1997 .

[2]  M. Goodale,et al.  The visual brain in action , 1995 .

[3]  C. Koch,et al.  Towards a neurobiological theory of consciousness , 1990 .

[4]  Claudio M. Privitera,et al.  Algorithms for Defining Visual Regions-of-Interest: Comparison with Eye Fixations , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Lawrence W. Stark,et al.  Visual perception and sequences of eye movement fixations: a stochastic modeling approach , 1992, IEEE Trans. Syst. Man Cybern..

[6]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[7]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[8]  Steven K. Rogers,et al.  Object Recognition Based on Human Saccadic Behaviour , 1999, Pattern Analysis & Applications.

[9]  M. Jagersand Saliency maps and attention selection in scale and spatial coordinates: an information theoretic approach , 1995, Proceedings of IEEE International Conference on Computer Vision.

[10]  Fabrizio Smeraldi,et al.  Facial feature detection by saccadic exploration of the Gabor decomposition , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[11]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[12]  S. Grossberg The complementary brain: unifying brain dynamics and modularity , 2000, Trends in Cognitive Sciences.

[13]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[14]  S Westland,et al.  Multiple groups of orientation–selective visual mechanisms underlying rapid orientated–line detection , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  Ah Chung Tsoi,et al.  Face recognition: a convolutional neural-network approach , 1997, IEEE Trans. Neural Networks.

[16]  Christopher M. Brown,et al.  Selective Attention as Sequential Behavior: Modeling Eye Movements with an Augmented Hidden Markov Model , 1990 .

[17]  Christof Koch,et al.  Feature combination strategies for saliency-based visual attention systems , 2001, J. Electronic Imaging.

[18]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[19]  D. Noton,et al.  Eye movements and visual perception. , 1971, Scientific American.

[20]  K. Fukushima Neural network model for selective attention in visual pattern recognition and associative recall. , 1987, Applied optics.

[21]  Ethem Alpaydin,et al.  Selective Attention for Handwritten Digit Recognition , 1995, NIPS.

[22]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[23]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[24]  I. Rybak,et al.  A model of attention-guided visual perception and recognition , 1998, Vision Research.

[25]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[26]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[27]  Martin Jägersand Saliency Maps and Attention Selection in Scale and Spatial Coordinates: An Information Theoretic Approach , 1995, ICCV.

[28]  G. Legge,et al.  Mr. Chips: An ideal-observer model of reading , 1997 .

[29]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[30]  RICHARD L. DIDDAY,et al.  Eye Movements and Visual Perception: A "Two Visual System" Model , 1975, Int. J. Man Mach. Stud..

[31]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  R. Klein,et al.  Inhibition of return , 2000, Trends in Cognitive Sciences.

[33]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[34]  D. J. Newman,et al.  UCI Repository of Machine Learning Database , 1998 .

[35]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[36]  Gerhard Krieger,et al.  Scene analysis with saccadic eye movements: Top-down and bottom-up modeling , 2001, J. Electronic Imaging.

[37]  John K. Tsotsos,et al.  A prototype for data-driven visual attention , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.