Odor recognition and segmentation by coupled olfactory bulb and cortical networks

Abstract We present a model of a coupled system of the olfactory bulb and cortex. Odor inputs to the epithelium are transformed to oscillatory bulbar activities. The cortex recognizes the odor by resonating to the bulbar oscillating pattern when the amplitude and phase patterns from the bulb match an odor memory stored in the intracortical synapses. We assume a cortical structure which transforms the odor information in the oscillatory pattern to a slow DC feedback signal to the bulb. This feedback suppresses the bulbar response to the pre-existing odor, allowing subsequent odor objects to be segmented out for recognition.