Neural Computation Theories of Learning

[1]  Stierlin Organization of Behavior. A Neuropsychological Theory , 1953 .

[2]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[3]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[4]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[5]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[6]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[7]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  John S. Edwards,et al.  The Hedonistic Neuron: A Theory of Memory, Learning and Intelligence , 1983 .

[9]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[10]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[11]  S. Kelso,et al.  Hebbian synapses in hippocampus. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Terrence J. Sejnowski,et al.  A Parallel Network that Learns to Play Backgammon , 1989, Artif. Intell..

[13]  Terrence J. Sejnowski,et al.  The Hebb Rule for Synaptic Plasticity: Algorithms and Implementations , 1989 .

[14]  S. G. Lisberger,et al.  Motor learning in a recurrent network model based on the vestibulo–ocular reflex , 1992, Nature.

[15]  Kenneth D. Miller,et al.  The Role of Constraints in Hebbian Learning , 1994, Neural Computation.

[16]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[17]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[18]  Gerald Tesauro,et al.  Temporal difference learning and TD-Gammon , 1995, CACM.

[19]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[20]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996 .

[21]  L. F. Abbott,et al.  A Model of Spatial Map Formation in the Hippocampus of the Rat , 1999, Neural Computation.

[22]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[23]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[24]  Te-Won Lee,et al.  Independent Component Analysis , 1998, Springer US.

[25]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[26]  Niraj S. Desai,et al.  Plasticity in the intrinsic excitability of cortical pyramidal neurons , 1999, Nature Neuroscience.

[27]  T. Sejnowski,et al.  The Book of Hebb , 1999, Neuron.

[28]  Christof Koch,et al.  How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate , 1999, Nature Neuroscience.

[29]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[30]  S. Nelson,et al.  Hebb and homeostasis in neuronal plasticity , 2000, Current Opinion in Neurobiology.

[31]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[32]  D. Linden,et al.  Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons , 2000, Nature Neuroscience.

[33]  M. Gazzaniga The new cognitive neurosciences, 2nd ed. , 2000 .

[34]  E. Oja,et al.  Independent Component Analysis , 2013 .

[35]  R. Kempter,et al.  Formation of temporal-feature maps by axonal propagation of synaptic learning , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Tzyy-Ping Jung,et al.  Imaging brain dynamics using independent component analysis , 2001, Proc. IEEE.

[37]  Y. Ben-Ari,et al.  Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance , 2002, Trends in Neurosciences.

[38]  D. Debanne,et al.  Long-term plasticity of intrinsic excitability: learning rules and mechanisms. , 2003, Learning & memory.

[39]  Rajesh P. N. Rao,et al.  Self–organizing neural systems based on predictive learning , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  H. Seung,et al.  Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission , 2003, Neuron.

[41]  Rajesh P. N. Rao,et al.  Motion detection and prediction through spike-timing dependent plasticity. , 2004, Network.

[42]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[43]  Ila R Fiete,et al.  Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong. , 2004, Journal of neurophysiology.

[44]  C. Gilbert,et al.  Perceptual learning and top-down influences in primary visual cortex , 2004, Nature Neuroscience.

[45]  Daniel Johnston,et al.  LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites , 2004, Nature Neuroscience.

[46]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[47]  L. Abbott,et al.  Cascade Models of Synaptically Stored Memories , 2005, Neuron.

[48]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[49]  L. F. Abbott,et al.  Supervised Learning Through Neuronal Response Modulation , 2005, Neural Computation.

[50]  T. J. Sullivan,et al.  Homeostatic synaptic scaling in self-organizing maps , 2006, Neural Networks.

[51]  Jean Bullier What Is Fed Back , 2006 .

[52]  James L. McClelland,et al.  A homeostatic rule for inhibitory synapses promotes temporal sharpening and cortical reorganization , 2006, Proceedings of the National Academy of Sciences.

[53]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[54]  A. Gittis,et al.  Intrinsic and synaptic plasticity in the vestibular system , 2006, Current Opinion in Neurobiology.

[55]  Jonathan R. Whitlock,et al.  Learning Induces Long-Term Potentiation in the Hippocampus , 2006, Science.

[56]  A. Sillito,et al.  Always returning: feedback and sensory processing in visual cortex and thalamus , 2006, Trends in Neurosciences.

[57]  D. Feldman Synaptic mechanisms for plasticity in neocortex. , 2009, Annual review of neuroscience.

[58]  O. Sporns Networks of the Brain , 2010 .

[59]  G. Turrigiano Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. , 2011, Annual review of neuroscience.

[60]  C. Gilbert,et al.  Top-Down Modulation of Lateral Interactions in Visual Cortex , 2013, The Journal of Neuroscience.

[61]  Terrence J. Sejnowski,et al.  Top-Down Inputs Enhance Orientation Selectivity in Neurons of the Primary Visual Cortex during Perceptual Learning , 2014, PLoS Comput. Biol..

[62]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[63]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.