Book Review: Gain Modulation in the Central Nervous System: Where Behavior, Neurophysiology, and Computation Meet

Gain modulation is a nonlinear way in which neurons combine information from two (or more) sources, which may be of sensory, motor, or cognitive origin. Gain modulation is revealed when one input, the modulatory one, affects the gain or the sensitivity of the neuron to the other input, without modifying its selectivity or receptive field properties. This type of modulatory interaction is important for two reasons. First, it is an extremely widespread integration mechanism; it is found in a plethora of cortical areas and in some subcortical structures as well, and as a consequence it seems to play an important role in a striking variety of functions, including eye and limb movements, navigation, spatial perception, attentional processing, and object recognition. Second, there is a theoretical foundation indicating that gain-modulated neurons may serve as a basis for a general class of computations, namely, coordinate transformations and the generation of invariant responses, which indeed may underlie all the brain functions just mentioned. This article describes the relationships between computational models, the physiological properties of a variety of gain-modulated neurons, and some of the behavioral consequences of damage to gain-modulated neural representations.

[1]  L Weiskrantz,et al.  Size Constancy in Monkeys with Inferotemporal Lesions , 1969, The Quarterly journal of experimental psychology.

[2]  D. Hubel Exploration of the primary visual cortex, 1955–78 , 1982, Nature.

[3]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  David L. Sparks,et al.  Auditory receptive fields in primate superior colliculus shift with changes in eye position , 1984, Nature.

[6]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[7]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[8]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[9]  R. Andersen Visual and eye movement functions of the posterior parietal cortex. , 1989, Annual review of neuroscience.

[10]  E. W. Kairiss,et al.  Hebbian synapses: biophysical mechanisms and algorithms. , 1990, Annual review of neuroscience.

[11]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  R. Desimone Face-Selective Cells in the Temporal Cortex of Monkeys , 1991, Journal of Cognitive Neuroscience.

[13]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[14]  C. Gross,et al.  Representation of visual stimuli in inferior temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  H. Karnath,et al.  Decrease of contralateral neglect by neck muscle vibration and spatial orientation of trunk midline. , 1993, Brain : a journal of neurology.

[16]  Terrence J. Sejnowski,et al.  Egocentric Spatial Representation in Early Vision , 1993 .

[17]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[19]  T. Sejnowski,et al.  Egocentric Spaw Representation in Early Vision , 1993, Journal of Cognitive Neuroscience.

[20]  J. Malpeli,et al.  Responses of neurons in primary visual cortex are modulated by eye position. , 1993, Journal of neurophysiology.

[21]  M. Tovée,et al.  Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. , 1994, Journal of neurophysiology.

[22]  T. Sejnowski,et al.  A neural model of the cortical representation of egocentric distance. , 1994, Cerebral cortex.

[23]  R. Rafal Neglect , 1994, Current Opinion in Neurobiology.

[24]  R. Rafal,et al.  Axis-based neglect of visual shapes , 1994, Neuropsychologia.

[25]  C. Gross,et al.  Coding of visual space by premotor neurons. , 1994, Science.

[26]  E. Rolls,et al.  View‐responsive neurons in the primate hippocampal complex , 1995, Hippocampus.

[27]  A. Opstal,et al.  Influence of eye position on activity in monkey superior colliculus. , 1995, Journal of neurophysiology.

[28]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[29]  R. Andersen,et al.  Head position signals used by parietal neurons to encode locations of visual stimuli , 1995, Nature.

[30]  AL van der Meer,et al.  The functional significance of arm movements in neonates , 1995, Science.

[31]  L F Abbott,et al.  Transfer of coded information from sensory to motor networks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Andersen,et al.  Mechanisms of Heading Perception in Primate Visual Cortex , 1996, Science.

[34]  R. Andersen,et al.  Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. , 1996, Journal of neurophysiology.

[35]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[36]  D. V. van Essen,et al.  Responses in area V4 depend on the spatial relationship between stimulus and attention. , 1996, Journal of neurophysiology.

[37]  C. Gross,et al.  Visuospatial properties of ventral premotor cortex. , 1997, Journal of neurophysiology.

[38]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[39]  L. Abbott,et al.  Invariant visual responses from attentional gain fields. , 1997, Journal of neurophysiology.

[40]  Emilio Salinas,et al.  Attentional gain modulation as a basis for translation invariance , 1997 .

[41]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[42]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[43]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[44]  T J Sejnowski,et al.  A new view of hemineglect based on the response properties of parietal neurones. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[45]  Charles G. Gross,et al.  Visual responses with and without fixation: neurons in premotor cortex encode spatial locations independently of eye position , 1998, Experimental Brain Research.

[46]  J. Driver,et al.  Visual Neglect , 1998 .

[47]  Richard A. Andersen,et al.  Separate body- and world-referenced representations of visual space in parietal cortex , 1998, Nature.

[48]  A. Dobbins,et al.  Distance modulation of neural activity in the visual cortex. , 1998, Science.

[49]  Richard A. Andersen,et al.  Visual self-motion perception during head turns , 1998, Nature Neuroscience.

[50]  I. Rock,et al.  Inattentional blindness: Perception without attention. , 1998 .

[51]  R. Parasuraman The attentive brain in aging and Alzheimer's disease. , 1998 .

[52]  D. Wolpert,et al.  Maintaining internal representations: the role of the human superior parietal lobe , 1998, Nature Neuroscience.

[53]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[54]  G. Laurent,et al.  Computation of Object Approach by a Wide-Field, Motion-Sensitive Neuron , 1999, The Journal of Neuroscience.

[55]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[56]  Bartlett W. Mel Why Have Dendrites? A Computational Perspective , 1999 .

[57]  A P Batista,et al.  Reach plans in eye-centered coordinates. , 1999, Science.

[58]  M Behrmann,et al.  Attention accesses multiple reference frames: evidence from visual neglect. , 1999, Journal of experimental psychology. Human perception and performance.

[59]  R A Andersen,et al.  Influence of gaze rotation on the visual response of primate MSTd neurons. , 1999, Journal of neurophysiology.

[60]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[61]  S. Celebrini,et al.  Gaze direction controls response gain in primary visual-cortex neurons , 1999, Nature.

[62]  J. Donoghue,et al.  Gaze Direction Modulates Finger Movement Activation Patterns in Human Cerebral Cortex , 1999, The Journal of Neuroscience.

[63]  R A Andersen,et al.  Memory activity of LIP neurons for sequential eye movements simulated with neural networks. , 2000, Journal of neurophysiology.

[64]  Joseph S. Gati,et al.  Eye Position Signal Modulates a Human Parietal Pointing Region during Memory-Guided Movements , 2000, The Journal of Neuroscience.

[65]  R. Zemel,et al.  Information processing with population codes , 2000, Nature Reviews Neuroscience.

[66]  K. Hoffmann,et al.  Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates. , 2000, Journal of neurophysiology.

[67]  R. Andersen,et al.  Intention-related activity in the posterior parietal cortex: a review , 2000, Vision Research.

[68]  T. Sejnowski,et al.  Impact of Correlated Synaptic Input on Output Firing Rate and Variability in Simple Neuronal Models , 2000, The Journal of Neuroscience.

[69]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[70]  A. Pouget,et al.  Relating unilateral neglect to the neural coding of space , 2000, Current Opinion in Neurobiology.

[71]  R. Andersen,et al.  Models of the Posterior Parietal Cortex Which Perform Multimodal Integration and Represent Space in Several Coordinate Frames , 2000, Journal of Cognitive Neuroscience.

[72]  Emilio Salinas,et al.  Gain Modulation A Major Computational Principle of the Central Nervous System , 2000, Neuron.

[73]  Jon Driver,et al.  Object-Centered Visual Neglect, or Relative Egocentric Neglect? , 2000, Journal of Cognitive Neuroscience.

[74]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[75]  T. Sejnowski,et al.  Simulating a lesion in a basis function model of spatial representations: comparison with hemineglect. , 2001, Psychological review.

[76]  L F Abbott,et al.  Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. , 2001, Progress in brain research.